听说背包问题很难? 这篇总结篇来拯救你了

文章转自代码随想录

已经把背包问题都讲完了,那么现在要对背包问题进行总结一番。

背包问题是动态规划里的非常重要的一部分,所以我把背包问题单独总结一下,等动态规划专题更新完之后,我们还会在整体总结一波动态规划。

关于这几种常见的背包,其关系如下:

听说背包问题很难? 这篇总结篇来拯救你了_第1张图片

通过这个图,可以很清晰分清这几种常见背包之间的关系。

在讲解背包问题的时候,我们都是按照如下五部来逐步分析,相信大家也体会到,把这五部都搞透了,算是对动规来理解深入了。

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

其实这五部里哪一步都很关键,但确定递推公式和确定遍历顺序都具有规律性和代表性,所以下面我从这两点来对背包问题做一做总结

# 背包递推公式

问能否能装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); ,对应题目如下:

  • 动态规划:416.分割等和子集
  • (opens new window)
  • 动态规划:1049.最后一块石头的重量 II
  • (opens new window)

问装满背包有几种方法:dp[j] += dp[j - nums[i]] ,对应题目如下:

  • 动态规划:494.目标和
  • (opens new window)
  • 动态规划:518. 零钱兑换 II
  • (opens new window)
  • 动态规划:377.组合总和Ⅳ
  • (opens new window)
  • 动态规划:70. 爬楼梯进阶版(完全背包)
  • (opens new window)

问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); ,对应题目如下:

  • 动态规划:474.一和零
  • (opens new window)

问装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); ,对应题目如下:

  • 动态规划:322.零钱兑换
  • (opens new window)
  • 动态规划:279.完全平方数
  • (opens new window)

# 遍历顺序

# 01背包

在动态规划:关于01背包问题,你该了解这些!

(opens new window)中我们讲解二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

和动态规划:关于01背包问题,你该了解这些!(滚动数组)

(opens new window)中,我们讲解一维dp数组01背包只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历。

一维dp数组的背包在遍历顺序上和二维dp数组实现的01背包其实是有很大差异的,大家需要注意!

# 完全背包

说完01背包,再看看完全背包。

在动态规划:关于完全背包,你该了解这些!

(opens new window)中,讲解了纯完全背包的一维dp数组实现,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

但是仅仅是纯完全背包的遍历顺序是这样的,题目稍有变化,两个for循环的先后顺序就不一样了。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

相关题目如下:

  • 求组合数:动态规划:518.零钱兑换II
  • (opens new window)
  • 求排列数:动态规划:377. 组合总和 Ⅳ
  • (opens new window)、动态规划:70. 爬楼梯进阶版(完全背包)
    • (opens new window)

    如果求最小数,那么两层for循环的先后顺序就无所谓了,相关题目如下:

    • 求最小数:动态规划:322. 零钱兑换
     (opens new window)、动态规划:279.完全平方数
    • (opens new window)

    对于背包问题,其实递推公式算是容易的,难是难在遍历顺序上,如果把遍历顺序搞透,才算是真正理解了

    # 总结

    这篇背包问题总结篇是对背包问题的高度概括,讲最关键的两部:递推公式和遍历顺序,结合力扣上的题目全都抽象出来了

    而且每一个点,我都给出了对应的力扣题目

    最后如果你想了解多重背包,可以看这篇动态规划:关于多重背包,你该了解这些!

    (opens new window),力扣上还没有多重背包的题目,也不是面试考察的重点。

    如果把我本篇总结出来的内容都掌握的话,可以说对背包问题理解的就很深刻了,用来对付面试中的背包问题绰绰有余!

    背包问题总结:

    听说背包问题很难? 这篇总结篇来拯救你了_第2张图片

你可能感兴趣的:(力扣基础150一刷,算法,动态规划,leetcode,c++,数据结构)