- 24GB GPU 中的 DeepSeek R1:Unsloth AI 针对 671B 参数模型进行动态量化
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseekollama
简介最初的DeepSeekR1是一个拥有6710亿个参数的语言模型,UnslothAI团队对其进行了动态量化,将模型大小减少了80%(从720GB减少到131GB),同时保持了强大的性能。当添加模型卸载功能时,该模型可以在24GBVRAM下以低令牌/秒的推理速度运行。推荐文章《本地构建AI智能分析助手之01快速安装,使用PandasAI和Ollama进行数据分析,用自然语言向你公司的数据提问为决策
- Elasticsearch搜索引擎存储:从原理到实践的全景解析
Python×CATIA工业智造
搜索引擎elasticsearch大数据
引言在大数据时代,数据规模呈指数级增长,传统数据库的模糊查询、实时分析能力逐渐成为瓶颈。Elasticsearch(简称ES)凭借其分布式架构、实时搜索和灵活的数据分析能力,成为企业级搜索与存储的核心引擎。截至2025年,ES在全球日志分析、电商搜索、实时监控等场景的市场占有率超过60%。本文将从存储架构、核心技术、应用场景及优化策略四个维度,深入解析Elasticsearch的设计哲学与实践价值
- python-pandas数据分析+案例分析
文章目录前言一、汽车销售数据可视化分析1.各年度汽车总销量及环比,各车类、级别车辆销量及环比2.车辆销售规模及环比、不同价位车销量及环比3.各车系、厂商、品牌车销量及环比,市占率及变化趋势4.品牌、车类、车型、级别的各top销量二、地质灾害航空公司客户价值分析1.原始数据存在少量的缺失值和异常值前言一、汽车销售数据可视化分析1.各年度汽车总销量及环比,各车类、级别车辆销量及环比importnump
- 数据分析案例-电脑笔记本价格数据可视化分析3
艾派森
数据分析信息可视化python数据分析数据挖掘电脑
♂️个人主页:@艾派森的个人主页✍作者简介:Python学习者希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录1.项目背景2.数据集介绍3.技术工具
- 用Python做数据分析之数据统计
学掌门
Python数据分析大数据python数据分析人工智能
接下来说说数据统计部分,这里主要介绍数据采样,标准差,协方差和相关系数的使用方法。1、数据采样Excel的数据分析功能中提供了数据抽样的功能,如下图所示。Python通过sample函数完成数据采样。2、数据抽样Sample是进行数据采样的函数,设置n的数量就可以了。函数自动返回参与的结果。1#简单的数据采样2df_inner.sample(n=3)3、简单随机采样Weights参数是采样的权重,
- pandas销售数据分析
pandas销售数据分析数据保存在data目录消费者数据:customers.csv商品数据:products.csv交易数据:transactions.csvcustomers.csv数据结构:字段描述customer_id客户IDgender性别age年龄region地区membership_date会员日期products.csv数据结构:字段描述product_id产品IDcategory
- 图神经网络:挖掘关系数据中的宝藏
图神经网络:挖掘关系数据中的宝藏在浩瀚的数据海洋中,蕴藏着一类特殊而强大的资源——关系数据。它们不是孤立的点,而是相互连接、彼此影响的复杂网络:社交平台上朋友的朋友、电商系统中商品与用户的互动、蛋白质分子内原子的结合、城市交通网中的道路连接……这些数据天然以图的形式存在,节点代表实体,边则承载着实体间千丝万缕的关系。传统的数据挖掘工具面对这些盘根错节的结构往往力不从心,而图神经网络(GNN)的崛起
- Python数据分析:从入门到精通
引言在当今数据驱动的时代,数据分析已成为企业和组织做出明智决策的关键。Python作为一种强大的编程语言,因其简洁性和丰富的数据分析库而成为数据科学领域的首选工具。无论你是初学者还是有一定经验的数据分析师,本指南都将带你从入门到精通Python数据分析,掌握必备技能和最佳实践。数据分析的重要性与Python的角色数据分析涉及收集、处理和解释数据,以揭示模式、趋势和见解。它有助于解决复杂问题,优化业
- 数据分析框架和方法
XiaoQiong.Zhang
人工智能
一、核心分析框架(TheBigPictureFrameworks)描述性分析(WhatHappened?)目的:了解过去发生了什么,描述现状,监控业务健康。核心工作:汇总、聚合、计算基础指标(KPI),生成报表和仪表盘。常用方法/指标:计数/求和/平均值/中位数:DAU/MAU,总销售额,客单价等。比率:转化率,点击率,流失率,毛利率等。分布:用户活跃度分布、订单金额分布、地域分布等。常用于理解群
- python基于Hadoop的NBA球员大数据分析与可视化系统
目录技术栈介绍具体实现截图系统设计研究方法:设计步骤设计流程核心代码部分展示研究方法详细视频演示试验方案论文大纲源码获取/详细视频演示技术栈介绍Django-SpringBoot-php-Node.js-flask本课题的研究方法和研究步骤基本合理,难度适中,本选题是学生所学专业知识的延续,符合学生专业发展方向,对于提高学生的基本知识和技能以及钻研能力有益。该学生能够在预定时间内完成该课题的设计。
- 【数据分析】多数据集网络分析:探索健康与退休研究中的变量关系
生信学习者1
数据分析(2025版)数据分析r语言数据挖掘数据可视化
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍加载R包数据下载导入数据数据预处理函数网络分析画图保存图片总结系统信息介绍在医学和社会科学研究中,理解多个变量之间的复杂关系对于揭示潜在的病理生理机制和社会行为模式至关重要。本文介绍了一种基于R语言的网络分析方法,用于探索HRS(健康与退休研究)及其类似研究(CHARLS、ELSA、MHAS、SHARE)中的变
- 基于Python的旅游数据可视化应用
摘要本文详细介绍了一个功能完善的基于Python语言开发的旅游行业数据可视化分析应用系统。该系统采用Pandas这一强大的数据处理库进行数据清洗、转换和预处理工作,确保数据质量可靠。在可视化展示方面,系统整合了Matplotlib和Seaborn两大主流可视化库,通过丰富的图表类型直观呈现数据分析结果。特别值得一提的是,所有可视化图表均采用统一的绿色主题配色方案,这种设计不仅美观大方,更能突出体现
- Pandas 学习教程
_pass_
Data-Alaysispandas信息可视化
目录定义基本操作一维数组操作二维数组操作数据选择过滤数据处理数据清洗数据转换数据分析排序分组聚合数据透视表高级操作合并数据时间序列处理自定义函数调用数据可视化集成数据导出和导入大数据分块处理定义全称:'paneldata'and'pythondataanalysis'Analy:Series(一维数据)、DataFrame(二维数据)主要应用:数据清洗:处理缺失数据、重复数据等数据转换:改变数据的
- 【kafka】在Linux系统中部署配置Kafka的详细用法教程分享
景天科技苑
linux基础与进阶shell脚本编写实战kafkalinux分布式kafka安装配置kafka优化
✨✨欢迎大家来到景天科技苑✨✨养成好习惯,先赞后看哦~作者简介:景天科技苑《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。《博客》:Python全栈,PyQt5和Tkinter桌面应用开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,云原生K8S,Prometheus监控,数据分析,Django
- 动态时间规整(Dynamic Time Warping,DTW)介绍
EmorZhong
机器学习人工智能深度学习数据结构算法
在时序数据分析中,动态时间规整(DynamicTimeWarping,DTW)是一种经典的用于度量两个时间序列相似度的算法。它的核心价值在于解决了传统距离度量(如欧氏距离)在处理时间序列时的局限性——尤其是当序列存在时间错位(如节奏快慢不同)或长度差异时,仍能准确捕捉它们的“形状相似性”。一、为什么需要DTW?传统的距离度量(如欧氏距离)要求两个时间序列必须长度相同且时间点严格对齐。但实际场景中,
- 搜广推校招面经九十一
美团机器学习/数据挖掘算法工程师_二面一、介绍一下ESMM模型,是否有进行过函数推导传统的转化率建模方式:只用发生点击(click=1)的样本来训练CVR模型。CVR定义如下:CVR=P(y=1∣x,z=1)CVR=P(y=1|x,z=1)CVR=P(y=1∣x,z=1)y=1表示用户发生了转化(如购买)z=1表示用户点击了广告这样做的问题:样本选择偏差(SampleSelectionBias,S
- python 计算生态概览的概述
文章目录前言python计算生态库的介绍1.网络爬虫2.数据分析3.文本处理4.数据可视化5.机器学习6.图形用户界面7.游戏开发8.网络应用开发前言python计算生态概览的解释Python计算生态概览是对Python作为一门强大而广泛使用的编程语言所拥有的庞大软件集合的整体描述和概述。这个生态体系不仅包含了Python的标准库(stdlib),即随Python解释器安装的基本模块,还涵盖了极其
- 一文搞懂怎么入门大模型
在人工智能飞速发展的当下,大模型已然成为推动众多领域创新变革的核心力量。无论是在智能客服、内容创作,还是数据分析、科学研究等方面,大模型都展现出了令人瞩目的能力。对于渴望踏入大模型领域的初学者而言,构建一个系统且全面的入门路径至关重要。接下来,我们将以DeepSeek为例,详细阐述如何系统地入门大模型。一、理论基础:搭建认知框架在深入实践之前,理解大模型的基础理论是关键。大模型,通常指具有海量参数
- 从零到一:王者荣耀英雄数据采集与技能图谱异步爬虫实战
程序员威哥
爬虫python开发语言自动化scrapy
引言:随着游戏行业的迅猛发展,王者荣耀作为一款深受玩家喜爱的手游,其英雄数据和技能信息成为了爬虫开发者研究的热点之一。通过抓取英雄数据并对技能图谱进行可视化,我们不仅能够更好地理解游戏数据,还可以为游戏爱好者或数据分析师提供一个有价值的数据分析平台。本篇文章将带你一步步实现王者荣耀英雄数据的采集与技能图谱的可视化,并使用异步爬虫技术提高爬取效率。我们将结合实际开发中的需求,深入讲解如何使用异步爬虫
- 【HTML网页】智能健康监测——全方位健康管理专家(包含网页源代码)
智能健康监测分析系统智能健康监测分析系统是一种基于物联网、大数据、人工智能等技术的综合性健康管理解决方案。它具有以下六大核心功能:实时监测系统通过智能传感器和可穿戴设备,实时采集用户的生理数据,例如心率、血压、血氧饱和度、血糖水平和睡眠质量等,确保用户随时掌握自己的身体状况。健康数据分析利用人工智能和大数据分析技术,系统对采集到的数据进行处理和分析,提取有价值的健康信息,如心率变异性、呼吸频率等,
- 【字节跳动】数据挖掘面试题0010:解释全国人均收入下降,各省份人均收入增加的现象,属于辛普森悖论(开放性问题)
言析数智
数据挖掘常见面试题辛普森悖论局部与整体分析差异归因数据分析面试题
文章大纲一、辛普森悖论的核心定义二、现象成因:加权平均中的“权重偏移”三、数学逻辑与案例说明1.数学表达式2.具体案例四、辛普森悖论的本质:忽略“混杂因素”的影响五、生活中常见的辛普森悖论案例及应对策略1.医疗疗法效果评估2.大学录取率的性别偏差3.篮球运动员投篮效率4.公司员工绩效与部门规模如何利用辛普森悖论?(数据分析中的价值)六、总结全国人均收入下降而各省份人均收入增加的现象,确实属于辛普森
- 大模型学习应用 6: Vercel 部署 自动获取微信公众号文章获取 项目
大地之灯
大模型应用与学习学习微信大模型应用开发pythongithubflask
大模型落地开发实战指南!请关注微信公众号:「AGI启程号」深入浅出,助你轻松入门!数据分析、深度学习、大模型与算法的综合进阶,尽在CSDN博客主页本文将详细介绍如何在Vercel平台上部署自动微信公众号文章获取项目,包括项目结构、代码实现、部署流程以及常见问题的解决方案。注意:本项目源代码github链接,可自行克隆到自己的代码仓库完成vercel部署,注意需要稳定ip输出(微信白名单需求),免费
- ChatGPTNextChat项目重构计划(九):NextChat 解析API路由处理逻辑 stream.ts
大模型落地开发实战指南!请关注微信公众号:「AGI启程号」深入浅出,助你轻松入门!数据分析、深度学习、大模型与算法的综合进阶,尽在CSDN博客主页目录一、文件作用概述二、导入模块与类型定义三、核心函数详细解析`fetch(url,options)`四、`fetch`函数详细步骤解析步骤1:检测Tauri环境并准备请求参数步骤2:创建数据流(`TransformStream`)步骤3:定义关闭数据流
- 数据挖掘:从理论到实践的深度探索
代码老y
数据挖掘人工智能
在当今数字化时代,数据已经成为企业决策的重要依据。数据挖掘作为一门从大量数据中提取有价值信息的技术,已经广泛应用于各个领域,如金融、医疗、零售、互联网等。本文将深入探讨数据挖掘的基本概念、主要技术和实际应用案例,帮助读者更好地理解数据挖掘的价值和应用。一、数据挖掘的基本概念(一)数据挖掘的定义数据挖掘(DataMining)是从大量数据中提取有用信息的过程。它结合了统计学、机器学习、数据库技术和人
- x86架构CPU市场格局
InnoLink_1024
芯片架构硬件架构
x86架构的CPU市场是全球处理器市场的核心,涵盖PC(桌面端与移动端)、服务器和超算等领域,主要玩家为英特尔(Intel)和AMD。以下基于最新数据分析市场格局及各领域份额,辅以国产厂商动态。1.总体市场概况x86架构因其成熟的生态系统和强大的兼容性,在PC和服务器市场占据主导地位。根据2024年数据,x86架构在服务器CPU市场占约91%的份额,而ARM等其他架构(如华为鲲鹏、飞腾)占约8%,
- 【力扣(LeetCode)】数据挖掘面试题0003: 356. 直线镜像
文章大纲题目描述**坐标变化规律**解题方案题目描述在一个二维平面空间中,给你n个点的坐标。问,是否能找出一条平行于y轴的直线,让这些点关于这条直线成镜像排布?平行于y轴的直线(即垂直于x轴的直线,其方程形式为(x=a),其中(a)为常数)的对称点具有以下显著特点:坐标变化规律设直线为(x=a),平面内任意一点(P(x,y))关于该直线的对称点为(P’(x’,y’)),则两者坐标满足:纵坐标不变:
- Julia爬取数据能力及应用场景
q56731523
julia开发语言
Julia是一种高性能编程语言,特别适合数值计算和数据分析。然而,关于数据爬取(即网络爬虫)方面,我们需要明确以下几点:虽然它是一门通用编程语言,但它的强项不在于网络爬取(WebScraping)这类任务。而且Julia的生态系统在爬虫方面还不够成熟和丰富。所以说Julia爬取数据后立即进行高性能的数据分析这点还是有一些优势。Julia虽然以高性能数值计算和数据分析见长,但它同样具备网络爬取(We
- 用Python的Chartify库,商业数据可视化效率提升13倍!
忆愿
Python编程的脉动之声pythonopencv人工智能计算机视觉深度学习神经网络机器学习
文章目录为啥要用Chartify?安装那些事儿从零开始画图基础柱状图进阶折线图散点图与气泡图专业数据分析必备技能多维度分析时间序列分析高级可视化技巧自定义主题交互式特性批量图表生成性能优化技巧大数据集处理内存优化实战案例:销售数据分析系统数据可视化这事儿,搞过的都知道有多费劲。用matplotlib画个图要调半天参数,才能让图表看起来稍微顺眼一点;seaborn虽然画出来的图确实好看,但是配置项太
- Python 机器学习核心入门与实战进阶 Day 8 - 数据建模与分析项目实战预备:项目规划与需求拆解
蓝婷儿
pythonpython机器学习开发语言
✅今日目标理解数据分析/建模项目的一般流程练习项目需求理解与目标拆解明确后续模型评估指标与预期交付成果起草项目计划文档(可选写为Markdown)一、项目背景与题目建议(可选方向)项目名称简介学生成绩预测分析系统根据历史表现预测成绩是否达标、学科薄弱点等求职者简历筛选模型根据简历信息预测是否通过初筛电商用户购买预测系统分析用户行为数据预测是否购买公司销售数据趋势分析可视化+聚合分析:月销售趋势、区
- AIGC与自动驾驶:文心一言的车载交互设计
AI天才研究院
ChatGPT实战计算AgenticAI实战AIGC自动驾驶文心一言ai
AIGC与自动驾驶:文心一言的车载交互设计关键词:AIGC、自动驾驶、车载交互、文心一言、自然语言处理、多模态交互、用户体验摘要:本文深入探讨人工智能生成内容(AIGC)技术在自动驾驶领域的创新应用,特别是百度文心一言如何重构车载交互体验。通过解析文心一言的核心技术架构、多模态融合算法、场景化交互模型,结合具体代码实现和数学模型,揭示其在语音交互、情境理解、个性化服务等场景中的技术优势。同时通过项
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。