React
凭借virtual DOM
和diff
算法拥有高效的性能,但是某些情况下,性能明显可以进一步提高
在react
中类组件通过调用setState
方法, 就会导致render
,父组件一旦发生render
渲染,子组件一定也会执行render
渲染
当我们想要更新一个子组件的时候,如下图绿色部分:
理想状态只调用该路径下的组件render
:
但是react的默认做法是调用所有组件的render,再对生成的虚拟DOM进行对比(黄色部分),如不变则不进行更新
从上图可见,黄色部分diff算法对比是明显的性能浪费的情况
除此之外, 常见性能优化常见的手段有如下:
通过shouldComponentUpdate
生命周期函数来比对 state
和 props
,确定是否要重新渲染
默认情况下返回true
表示重新渲染,如果不希望组件重新渲染,返回 false
即可
跟shouldComponentUpdate
原理基本一致,通过对 props
和 state
的浅比较结果来实现 shouldComponentUpdate
,源码大致如下:
if (this._compositeType === CompositeTypes.PureClass) {
shouldUpdate = !shallowEqual(prevProps, nextProps) || ! shallowEqual(inst.state, nextState);
}
shallowEqual
对应方法大致如下:
const hasOwnProperty = Object.prototype.hasOwnProperty;
/**
* is 方法来判断两个值是否是相等的值,为何这么写可以移步 MDN 的文档
* https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Reference/Global_Objects/Object/is
*/
function is(x: mixed, y: mixed): boolean {
if (x === y) {
return x !== 0 || y !== 0 || 1 / x === 1 / y;
} else {
return x !== x && y !== y;
}
}
function shallowEqual(objA: mixed, objB: mixed): boolean {
// 首先对基本类型进行比较
if (is(objA, objB)) {
return true;
}
if (typeof objA !== 'object' || objA === null ||
typeof objB !== 'object' || objB === null) {
return false;
}
const keysA = Object.keys(objA);
const keysB = Object.keys(objB);
// 长度不相等直接返回false
if (keysA.length !== keysB.length) {
return false;
}
// key相等的情况下,再去循环比较
for (let i = 0; i < keysA.length; i++) {
if (
!hasOwnProperty.call(objB, keysA[i]) ||
!is(objA[keysA[i]], objB[keysA[i]])
) {
return false;
}
}
return true;
}
当对象包含复杂的数据结构时,对象深层的数据已改变却没有触发 render
注意:在react
中,是不建议使用深层次结构的数据
React.memo
用来缓存组件的渲染,避免不必要的更新,其实也是一个高阶组件,与 PureComponent
十分类似。但不同的是, React.memo
只能用于函数组件
import { memo } from 'react';
function Button(props) {
// Component code
}
export default memo(Button);
如果需要深层次比较,这时候可以给memo第二个参数传递比较函数
function arePropsEqual(prevProps, nextProps) {
// your code
return prevProps === nextProps;
}
export default memo(Button, arePropsEqual);
如果我们使用内联函数,则每次调用render
函数时都会创建一个新的函数实例,如下:
import React from "react";
export default class InlineFunctionComponent extends React.Component {
render() {
return (
<div>
<h1>Welcome Guest</h1>
<input type="button" onClick={(e) => { this.setState({inputValue: e.target.value}) }} value="Click For Inline Function" />
</div>
)
}
}
我们应该在组件内部创建一个函数,并将事件绑定到该函数本身。这样每次调用 render
时就不会创建单独的函数实例,如下:
import React from "react";
export default class InlineFunctionComponent extends React.Component {
setNewStateData = (event) => {
this.setState({
inputValue: e.target.value
})
}
render() {
return (
<div>
<h1>Welcome Guest</h1>
<input type="button" onClick={this.setNewStateData} value="Click For Inline Function" />
</div>
)
}
}
用户创建新组件时,每个组件应具有单个父标签。父级不能有两个标签,所以顶部要有一个公共标签,所以我们经常在组件顶部添加额外标签div
这个额外标签除了充当父标签之外,并没有其他作用,这时候则可以使用fragement
其不会向组件引入任何额外标记,但它可以作为父级标签的作用,如下所示:
export default class NestedRoutingComponent extends React.Component {
render() {
return (
<>
<h1>This is the Header Component</h1>
<h2>Welcome To Demo Page</h2>
</>
)
}
}
从性能方面考虑,在render
方法中使用bind
和render
方法中使用箭头函数这两种形式在每次组件render
的时候都会生成新的方法实例,性能欠缺
而constructor
中bind
事件与定义阶段使用箭头函数绑定这两种形式只会生成一个方法实例,性能方面会有所改善
Immutable可以给 React 应用带来性能的优化,主要体现在减少渲染的次数
在做react
性能优化的时候,为了避免重复渲染,我们会在shouldComponentUpdate()
中做对比,当返回true
执行render
方法
Immutable
通过is
方法则可以完成对比,而无需像一样通过深度比较的方式比较
从工程方面考虑,webpack
存在代码拆分能力,可以为应用创建多个包,并在运行时动态加载,减少初始包的大小
而在react
中使用到了Suspense
和 lazy
组件实现代码拆分功能,基本使用如下:
const johanComponent = React.lazy(() => import(/* webpackChunkName: "johanComponent" */ './myAwesome.component'));
export const johanAsyncComponent = props => (
<React.Suspense fallback={<Spinner />}>
<johanComponent {...props} />
</React.Suspense>
);
采用服务端渲染端方式,可以使用户更快的看到渲染完成的页面
服务端渲染,需要起一个node服务,可以使用express、koa等,调用react的renderToString方法,将根组件渲染成字符串,再输出到响应中
例如:
import { renderToString } from "react-dom/server";
import MyPage from "./MyPage";
app.get("/", (req, res) => {
res.write("My Page ");
res.write("");
res.write(renderToString(<MyPage/>));
res.write("");
res.end();
});
客户端使用render方法来生成HTML
import ReactDOM from 'react-dom';
import MyPage from "./MyPage";
ReactDOM.render(<MyPage />, document.getElementById('app'));
除此之外,还存在的优化手段有组件拆分、合理使用hooks等性能优化手段…
通过上面初步学习,我们了解到react常见的性能优化可以分成三个层面:
通过这三个层面的优化结合,能够使基于react项目的性能更上一层楼