- 打造企业级数据治理运营体系:从项目到产品,再到体系化运营
晴天彩虹雨
数据治理体系化详解大数据数据仓库bigdataetl工程师etl
“治理不是项目,而是一种持续运营的能力。”——企业数据治理的终点,是从‘上线’走向‘长治久安’。本文目录为什么数据治理必须“可运营”?企业治理运营体系四要素治理运营的核心流程设计治理运营常见问题与对策治理成效度量指标体系总结与下一步1️⃣为什么数据治理必须“可运营”?在多数企业中,数据治理容易陷入以下误区:误区表现治理项目化一次项目验收完就结束,缺乏后续维护♂️责任虚化“治理归数据团队,业务不管
- 魔都AI医疗哪家强?全景揭秘科技创新与未来钱景!
引言上海作为中国科技创新的先锋城市,正在AI医疗领域崭露头角。根据2024年12月的数据,上海拥有34家专注于AI药物研发的公司,占全国预临床研究的60%和临床试验的47%。这些公司利用深度学习、大语言模型(LLM)和计算机视觉等技术,革新药物发现、医疗影像分析和数据治理,推动医疗行业的智能化转型。从全球首个人工智能医院“AgentHospital”到AI驱动的诊断系统,上海的AI医疗生态正在重塑
- 掌握大数据领域数据湖的部署要点
掌握大数据领域数据湖的部署要点关键词:数据湖,大数据部署,数据治理,存储架构,元数据管理,数据质量,湖仓一体摘要:在数据爆炸的时代,企业面临着"数据多却用不好"的困境——结构化数据藏在数据库里,非结构化数据堆在服务器上,半结构化数据散落在日志文件中。数据湖就像一个"智能中央仓库",能统一存储所有类型的数据,并通过灵活的管理让数据"活起来"。本文将用"图书馆管理员建仓库"的故事,从概念理解、架构设计
- 基于DeepSeek × 数据治理如何落地?这套解决方案可参考!
Q:数据治理困局怎么破?3步落地DeepSeek实战方案导语:"每天处理10亿条数据,却找不到关键业务指标?""数据部门80%时间在'找数据-洗数据-背锅'的死循环?"这不是危言耸听——国内83%的企业正困在数据沼泽中(IDC最新数据)。今天揭秘某头部电商企业如何用DeepSeek方案,3个月实现数据治理自动化,让数据真正成为资产!一、数据治理的三大致命误区(90%企业正在踩坑)"工具万能论":买
- 我国在AI、元宇宙、生成式AI赛道的竞争带来的投资机会
数据与人工智能律师
大数据区块链人工智能网络数据库
首席数据官高鹏律师团队编著中国在AI、元宇宙、生成式AI赛道的竞争已进入技术深化与商业落地并行的关键阶段,未来投资机会可围绕以下五大方向展开:一、基础设施与算力支撑1.云计算与混合云服务生成式AI对算力和云服务需求激增,联想集团等布局混合云的企业受益于企业数字化转型需求。IDC预测,到2025年,50%的企业将与生成式AI云提供商建立战略联系,云服务商需优化数据治理和成本控制能力。2.AI芯片与算
- 景联文科技完成数千万元Pre-A轮融资,加速公共数据生产运营战略布局
景联文科技
人工智能大数据
2025年5月,景联文科技近期完成数千万元Pre-A轮融资,投资方为杭州金投集团旗下基金,本轮融资将用于布局公共数据生产运营、构建智能化语料工程平台和自建垂域高质量标注基地,形成"平台+基地+行业"的数据链闭环生态。一、聚焦公共数据生产运营国家数据局成立标志着数据治理从“分散监管”向“集中统筹”转型,从顶层设计开始快速推动“数据要素市场化”。2025年5月,国家宣布将加大中央财政资金投入,支持地方
- 解析大数据领域结构化数据的管理模式
大数据洞察
大数据ai
解码结构化数据:大数据时代的高效管理模式与实践指南关键词结构化数据、大数据管理、数据建模、分布式数据库、数据仓库、数据治理、性能优化摘要在大数据的洪流中,结构化数据犹如隐藏在波涛之下的磐石,虽然不如非结构化数据那般引人注目,却是企业决策的基石。本文深入剖析了大数据环境下结构化数据的管理模式,从传统关系型数据库到现代分布式系统,从数据建模到存储架构,全面解读了结构化数据管理的核心技术与实践方法。通过
- 编织数据的实时脉络——构建基于MySQL的数据编织平台,实现实时数据治理
墨夶
数据库学习资料1mysql
在当今数字化转型加速的时代,企业面临着前所未有的挑战与机遇。随着业务复杂度和数据量的不断增长,传统的数据管理方式已难以满足现代企业的需求。数据编织(DataFabric)作为一种新兴的数据架构,它通过集成、管理和提供对分散在不同系统中的数据访问来简化复杂的数据环境,为企业提供了更加高效的数据管理和利用途径。本文将详细介绍如何构建一个基于MySQL的数据编织平台,帮助您实现对企业内部数据流动的全面掌
- 数据治理 × 知识库 × 大模型:解开企业智能化转型的 “不可能三角”
“数据是新时代的石油,但未经治理的石油会堵塞管道;知识是企业的黄金矿脉,但缺乏提炼的矿石无法兑换价值;大模型是超级引擎,但燃料不足的引擎终将熄火。”——唯有四者协同,才能让企业的智能化转型从“纸上蓝图”走向“落地生根”。一、数据治理:AI时代的“地基工程”(1)数据治理的三大核心模块•标准化体系:◦数据字典与元数据管理:某跨国零售企业通过建立统一的数据字典(例如“销售额”统一定义为“含税交易金额”
- 自动上报数据报表方案和实施避坑指南
Alex艾力的IT数字空间
javaintellij-ideaspringboot数据库架构架构小程序集成测试
一、方案设计系统架构设计采用分层架构:数据采集层→数据处理层→报表生成层→分发展示层(参考数据采集流程&系统架构设计)核心模块组成自动化采集模块(API/数据库/文件接口)智能清洗转换模块(数据治理规则引擎)可视化报表生成模块(模板引擎+动态计算)定时调度与监控模块(任务队列+异常预警)二、实施阶段1:需求分析与规划业务需求确认确定报表类型(日报/周报/月报)识别关键指标(销售额、库存周转率等)明
- 医疗健康·AI医生(上海杨浦):构建慢性病管理数字化新范式
常州北格数字孪生
医疗AI肝病防治数字医疗新基建上海医疗创新分级诊疗医疗数据安全
在数字化转型浪潮中,医疗健康领域正经历深刻变革。上海杨浦数字医疗概念验证中心联合三甲医院打造的肝病防治AI医生项目,通过构建可信数据空间与协同转化平台,为慢性病管理提供了创新性解决方案。本文将从技术架构、应用实践与行业价值三个维度,深度解析这一数字医疗标杆案例。上海杨浦数字医疗创新实践——数据驱动的肝病防治新范式一、技术底座:可信数据空间驱动医疗AI创新1.多源异构数据治理体系项目突破传统医疗数据
- 深度剖析数据中台:大数据领域的核心技术架构
大数据洞察
大数据架构javaai
深度剖析数据中台:大数据领域的核心技术架构关键词:数据中台、大数据、核心技术架构、数据治理、数据服务摘要:本文旨在对数据中台这一大数据领域的核心技术架构进行深度剖析。首先介绍了数据中台的背景,包括其目的、适用读者、文档结构和相关术语。接着阐述了数据中台的核心概念、原理和架构,通过文本示意图和Mermaid流程图进行直观展示。详细讲解了核心算法原理及具体操作步骤,并结合Python源代码进行说明。引
- 大数据领域数据工程的版本控制策略
AGI大模型与大数据研究院
大数据elasticsearch搜索引擎ai
大数据领域数据工程的版本控制策略关键词:大数据工程、数据版本控制、Git、DeltaLake、MLflow、数据血缘、数据治理摘要:本文深入探讨大数据环境下的数据版本控制策略,从传统代码版本控制工具(Git)的局限性出发,分析大数据场景特有的版本控制挑战。文章系统介绍DeltaLake、MLflow等专业数据版本控制工具的原理和实现,详细讲解数据版本控制的数学模型和操作流程,并通过实际案例展示如何
- 大数据时代:如何构建高效的数据中台架构?
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶大数据架构ai
大数据时代:如何构建高效的数据中台架构?关键词:数据中台、架构设计、数据治理、数据服务、微服务架构、云计算、大数据技术摘要:在企业数字化转型加速的背景下,数据中台作为连接数据资源与业务应用的核心枢纽,已成为释放数据价值的关键基础设施。本文从数据中台的核心概念出发,系统解析其技术架构与实施路径,涵盖数据采集、存储计算、治理服务等核心模块的设计原理。通过Python代码示例演示数据清洗与服务接口开发,
- 《Data+AI驱动的全栈智能实践开放日》线上直播来了!
数据库人工智能阿里云阿里巴巴
阿里云瑶池数据库生态工具重磅首发!首次公开DataAgentforAnalytics、DataAgentforMeta、DASAgent等DataAgent系列产品,揭秘在AI时代如何让数据“活起来”!颠覆想象的技术碰撞解锁Data+AI在数据库领域的创新实践探索从数据治理到智能决策的全链路解决方案!️3日连播干货满满!研发专家亲授实战经验:如何用AI优化数据库性能?如何实现分钟级数据洞察?如何构
- Flink SQL解析工具类实现:从SQL到数据血缘的完整解析
Edingbrugh.南空
flink大数据flinksql大数据
在大数据处理领域,FlinkSQL作为流批统一的声明式编程接口,已成为数据处理的核心组件。本文将深入解析一个FlinkSQL解析工具类的实现,该工具能够解析FlinkSQL语句,提取表定义、操作关系及数据血缘信息,为数据治理、血缘分析和SQL验证提供基础能力。工具类核心功能概述FlinkParserUtil类实现了FlinkSQL的解析功能,主要包含以下核心能力:SQL过滤与解析:过滤自定义函数声
- 2025企业级BI产品评测和推荐
企业智能研究
mysqlhbase
一、2025年BI发展趋势:AI驱动与场景深化随着数据量的爆发式增长和企业数字化转型的加速,2025年的BI(商业智能)市场呈现出以下核心趋势:AI增强分析成为标配:AI能力从“锦上添花”变为“核心功能”,自然语言查询(NLQ)、自动洞察、预测性分析等模块深度集成,降低数据分析门槛。数据民主化与低代码化:业务人员可通过拖拽式界面和预设模板自主完成数据分析,IT部门转向数据治理与模型优化。云原生与混
- 数据要素治理框架下图情学科的核心角色重塑
埃文科技官方
大数据人工智能
数据要素化作为数字经济时代的核心特征,正在深刻重塑图书情报学科(以下简称“图情学科”)的发展轨迹。随着数据被正式列为第五大生产要素,图情学科面临前所未有的机遇与挑战,其学科内涵、研究范式、实践方向均需重新定位以适应时代变革。一、学科发展机遇的拓展1.数据治理顶层设计的深化数据要素化要求构建覆盖全生命周期的治理体系,图情学科在数据管理领域的积累成为关键助力。传统的数据生命周期管理经验可直接应用于数据
- 【数据治理CDGA笔记】第三章:数据治理
stay_running
笔记
数据治理(10分)引言定义在管理数据资产过程中行驶权利、掌控和共享决策(包括计划、监控和实施)的系列活动职能:数据治理职能是指导所有其他数据管理领域的活动目的确保根据数据管理制度和最佳实践正确地管理数据驱动力是确保组织可以从数据中获得价值,数据治理聚焦于如何制定有关数据的决策,以及人员流程在数据方面的行为方式数据治理项目包括战略(Strategy):定义、交流和驱动数据战略和数据治理战略的执行制度
- 医疗AI大数据处理流程的全面解析:从数据源到应用实践
Allen_Lyb
医疗高效编程研发人工智能机器学习健康医疗架构大数据
医疗AI大数据处理流程是一个复杂而系统的工程,涉及从数据源获取到最终应用的多个关键环节。随着信息技术在医疗行业的深入应用,医疗数据呈现爆发式增长,如何有效处理这些数据并转化为有价值的医疗知识,成为推动医疗AI发展的核心问题。本报告将全面剖析医疗AI大数据处理流程的关键环节,包括数据源、数据授权、数据接入、数据清洗、数据标准化、数据治理、数据应用与AI分析,以及数据流与数据仓库的概念,为医疗AI从业
- 大型企业数据治理与数据资产化:数字化转型的炼金术革命
熊猫钓鱼>_>
数字化大数据数据分析
在某一线城市的一座摩天大楼里,某世界500强企业的IT主管凝视着眼前的监控大屏:12个业务系统的数据孤岛、63%的重复数据项、每天超过500万次的无效数据查询。这不是科幻电影的场景,而是2023年全球500强企业普遍面临的现实困境。当数据洪流以每年62%的速度增长时,传统的数据管理方式正在经历前所未有的挑战。在这个数据即权力的时代,如何将海量数据转化为可量化、可流通、可持续增值的战略资产,已成为决
- 【数据治理失败的10大原因】
暴躁小师兄数据学院
数据治理大数据
数据治理失败的10大原因数据治理是企业管理和优化数据资产的关键过程,涉及数据质量、安全、合规和共享等方面。如果实施不当,会导致数据混乱、合规风险或业务损失。以下是数据治理失败的10大常见原因,基于行业最佳实践和案例分析。每个原因包括简要解释和潜在影响。缺乏高层领导支持数据治理需要企业高层的持续承诺和资源投入。如果缺乏CEO或董事会支持,项目容易因优先级低而停滞,导致战略脱节和资金短缺。数据质量低下
- 【Docker实战】NineData社区版快速部署指南:10分钟搭建你的数据分析平台
ivwdcwso
运维与云原生docker数据分析容器NineData数据平台云原生数据治理
数据分析平台的搭建往往耗时耗力,本文将带你通过Docker容器化技术,轻松部署NineData社区版,快速构建企业级数据分析平台。无需复杂配置,只需几行命令,即可拥有强大的数据处理能力。一、NineData简介NineData是一款功能强大的数据分析平台,提供了数据集成、数据开发、数据治理、数据服务等全方位功能。社区版作为其免费版本,为中小企业和个人开发者提供了入门级的数据分析能力。通过Docke
- 【数据破茧成蝶】企业数据标准:AI时代的智能罗盘与增长基石
领码科技
数字化转型实战篇人工智能数据治理数据标准大数据数据质量
摘要在数字经济迅猛发展的时代,数据已成为企业最重要的战略资产。然而,数据的海量增长与多来源状态导致数据质量参差不齐、碎片化严重,成为企业数字化转型的一大阻碍。企业数据治理中的核心基石——数据标准,作为一套涵盖业务定义、技术实现与管理保障的综合规范体系,确保数据从采集、处理、传输到应用全生命周期保持高质量与一致性。本文深度解读数据标准的内涵及其在AI、大数据等技术驱动下的关键价值,系统阐释其助力智能
- 基于大数据的数据挖掘、数据中台、数据安全架构设计方案:核心技术与架构、大数据平台与数据管理、建模平台与数据治理、应用案例与优势
公众号:优享智库
数字化转型数据治理主数据数据仓库大数据数据挖掘架构
本文介绍了基于大数据的数据挖掘、数据中台、数据安全架构设计方案,涵盖了从技术架构到功能应用的全方位内容。核心技术与架构IT环境融合:构建了包含网关、云端、终端、物联网、反病毒技术、PC、核心层、物理机、IOT终端、基于操作系统的文件识别、反黑客技术、大数据技术、移动、汇聚层、虚拟化、工业控制系统、基于网络的协议解析、基于大数据的数据挖掘、信创、接入层、云/容器、工业互联网、身份安全技术、基于密码的
- 数据治理能力框架全解析:从概念到落地
晴天彩虹雨
数据治理体系化详解大数据数据仓库bigdataetl
数据治理不是“喊口号”,而是要构建一整套有组织、有标准、有执行的能力体系。只有构建清晰的能力框架,数据治理才能真正落地执行。目录什么是数据治理能力框架?数据治理的核心能力域数据治理能力框架全景图(建议收藏)不同成熟度阶段下的能力演进总结与思考1️⃣什么是数据治理能力框架?数据治理能力框架,是对一个组织在数据治理方面所需具备的关键职能模块、机制与工具、制度与责任体系的全景式描述。它是一套可衡量、可执
- 智能数据标签引擎:企业级分类分级与动态管控实践
KKKlucifer
分类数据挖掘人工智能
在数字化转型浪潮中,企业数据量呈爆发式增长,数据的多样性和复杂性也不断提升。如何对海量数据进行高效分类分级,并实施动态管控,成为企业释放数据价值、保障数据安全的关键挑战。智能数据标签引擎应运而生,它通过引入先进的人工智能和机器学习技术,为企业构建起一套精准、灵活的数据管理体系。本文将深入探讨智能数据标签引擎的核心能力、应用场景,并推荐几款国内头部网安的数据分类分级平台,助力企业提升数据治理水平。智
- 从混沌到宝藏:数据治理、清洗与资产化的炼金术
鼓掌MVP
人工智能
当全球最大零售商沃尔玛将尿布与啤酒并排陈列时,其背后是TB级交易数据的深度清洗与关联分析。这一反直觉的决策最终提升销售额35%,揭示了脏数据中可能蕴藏的最大商业价值——前提是经过严格的治理与清洗流程。2021年,某国际车企因客户数据未脱敏泄露被GDPR重罚8.7亿欧元;2023年,医疗AI模型因训练数据偏见导致误诊率激增50%——这些触目惊心的案例印证了未经治理的数据不是资产,而是负债。本文将深入
- 【GITHub开源项目实战】Labelbox Python SDK 实战指南:高效管理数据标注任务的工程集成与自动化优化策略解析
LabelboxPythonSDK实战指南:高效管理数据标注任务的工程集成与自动化优化策略解析关键词Labelbox、数据标注平台、PythonSDK、标注任务自动化、数据管道集成、异步上传、Webhooks、项目管理、模型辅助标注、审核流程自动化、数据质量控制、训练数据治理、AI数据集迭代摘要LabelboxPythonSDK是用于与Labelbox数据标注平台进行程序化交互的官方工具,支持标注
- 做了数据中台,还需要做数据治理吗?
美林数据
数据治理数据中台数据质量管理
引言企业建设过数据中台,还有必要做数据治理吗?企业做过领导驾驶舱,还需要做数据治理吗?企业做过生产管控、质量管控等,也有需要做数据治理吗?企业数据中台项目中包括了数据管理,为什么还要做数据治理呢?企业建了数据中台,就等于企业具备数据管理及服务能力吗?……【当下痛点】“慢、难、不准”在数据要素背景下,大部分的企业数字化转型选择了基于数据驱动业务增长的路径,建设了数据中台项目。这类项目以面向业务部门的
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio