- 数据目录:数字化转型的导航引擎与核心基建
领码科技
数据目录数字化转型元数据管理数据治理智能分析
摘要:数据目录作为企业数据资产的“结构化地图”,通过系统化梳理元数据、建立多维度分类体系,成为数字化转型的底层支撑。其核心价值在于提升数据可见性、可用性与协作效率,助力企业实现从数据孤岛到智能决策的跨越。本文从定义、分类、构建逻辑切入,结合华为等企业实践,剖析数据目录如何驱动数据治理、加速业务创新,并为不同阶段的数字化转型提供可落地的实施路径。关键字:数据目录、数字化转型、元数据管理、数据治理、智
- 第二篇:中国企业数据治理现状与典型挑战
小技工丨
数据治理人工智能网络大数据数据治理
中国企业数据治理现状与典型挑战引言随着数字经济的快速发展,数据已成为企业的核心战略资产。然而,中国企业在数据治理实践中仍面临诸多挑战。本文将深入分析中国企业数据治理的现状,对比金融、医疗、制造业等不同行业的数据治理成熟度,梳理相关政策法规驱动因素,剖析企业普遍面临的数据治理痛点,并通过典型案例深入探讨数据治理项目失败的根本原因,为企业构建有效的数据治理体系提供参考。1.行业扫描报告1.1金融/医疗
- 数仓建模—手把手教你用 DeepSeek 打造高效数据治理体系
不二人生
大模型数仓建模大模型deepseek
数仓建模—手把手教你用DeepSeek打造高效数据治理体系在这个数字化转型的时代,数据治理已经成为企业提升竞争力的核心能力之一。然而,对于很多企业来说,数据治理仍然是一项复杂而艰巨的任务。今天,我们将为你详细介绍如何利用DeepSeek这一强大的AI工具,快速构建属于自己的数据治理体系。无论你是数据治理的新手,还是正在寻找更高效的解决方案,这篇文章都将为你提供清晰的指导。一、为什么要选择DeepS
- 一文理清:阿里系数据中台-数据治理工具集(傻傻也能分清楚)
Debug_Snail
HadoopBigData技术工具人工智能hadoop数据仓库
阿里云提供的大数据与数据分析产品种类较多,各产品的定位和核心功能有所不同。以下是对DataWorks、MaxCompute、Dataphin、AnalyticDBforMySQL(ADB)、QuickBI、EMR的详细梳理。一、核心产品定位与功能DataWorks定位:一站式大数据开发治理平台,提供数据集成、开发、调度、治理、服务等全链路能力。核心功能:数据集成:支持异构数据源(如数据库、OSS、
- 一文理清概念:数据中台(DMP)-数据仓库(DW)-数据湖(DL)-湖仓一体-数据治理(DG)
Debug_Snail
HadoopBigDataDataScience数据仓库大数据数据中台数据湖数据治理
数据仓库、数据中台、数据湖、湖仓一体是数据管理和分析领域的重要概念,它们在功能、架构和应用场景上各有特点,同时也在演进中相互关联和补充。以下是对它们的定义和关系的详细解析:1.核心概念(1)数据仓库(DataWarehouse,DW)定义:一种面向主题的、集成的、稳定的数据存储系统,用于支持企业决策分析(如BI、报表)。数据通常经过ETL(抽取、转换、加载)处理,以结构化形式存储,采用Schema
- 内容中台的核心架构是什么?
清风徐徐de来
其他
模块化架构设计解析内容中台的模块化架构通过分层解耦实现灵活扩展,其核心由基础资源层、能力服务层与业务应用层构成。基础层以统一数据治理体系为支撑,通过标准化接口实现结构化与非结构化数据的统一存储,例如Baklib采用分布式存储架构保障数据安全性与访问效率。服务层整合智能分发引擎与API协同策略,支持动态编排内容处理流程,如自动标签生成与多版本管理。应用层通过可配置化组件对接多终端场景,确保知识库构建
- 内容中台赋能数字化内容管理智能升级
清风徐徐de来
其他
智能元数据引擎架构解析现代智能元数据引擎通过三层模型实现数据治理的范式突破:底层采用动态本体建模技术,支持多源异构数据整合;中间层部署语义推理框架,结合知识图谱构建能力实现上下文感知;应用层则通过动态工作流配置驱动业务场景适配。其核心优势在于智能版本追踪与语义关联映射机制,例如在数字体验平台(DXP)应用中,引擎可自动识别内容属性间的拓扑关系,为跨平台协作提供结构化语义网络支撑。实践表明,采用标准
- 大龄IT从业人员如何实现大厂梦
繁华之中悟静
职场发展求职招聘
本文是针对大龄的IT从业人员冲击大厂高薪岗位的一些切实可行的建议,按照建议执行后,可以让这些依然心存大厂高薪梦的老男孩们增大一些实现梦想的机会。一、精准定位岗位赛道选择"经验溢价型"岗位推荐方向:行业解决方案架构师(如金融/政务云)数据治理专家(需掌握元数据管理、数据合规)技术布道师(需具备开源社区贡献经验)案例:某42岁候选人通过展示金融风控系统架构经验,以P9职级入职阿里,薪资比同级别年轻员工
- 数据治理专业
we19a0sen
大数据
一、数据治理基础1.数据治理概述定义数据治理是组织对数据资产的全生命周期管理过程,通过制定政策、流程和技术手段,确保数据的质量、安全、合规性和有效利用。其核心目标是提升数据价值,支持业务决策,同时降低风险(如数据泄露、合规问题)。重要性•提升数据质量:通过标准化和清洗减少冗余错误,增强数据可信度;•保障数据安全:建立访问控制、加密和审计机制,防范泄露风险;•促进合规性:满足GDPR等法规要求,避免
- 11页PDF | DeepSeek平民化:AI助力数据治理整体方案(附下载)
Leo.yuan
大数据人工智能
一、前言这份报告介绍了一种基于人工智能(AI)的智能数据治理整体方案,旨在通过AI的自然语言处理、学习能力、理解与推理能力等技术手段,解决传统数据治理中存在的问题,提升企业数据管理能力和效率。方案以高质量数据资产知识库为基础,结合智能化技术工具箱,针对数据治理中的痛点场景(如文档编写、元数据管理、数据标准、数据质量、数据安全、数据资产盘点等)提供智能化解决方案。通过AI技术的应用,方案能够实现数据
- DAMA数据管理知识体系全接触-数据治理-大数据
我思故我在6789
运维专栏架构师专栏大数据专栏架构安全
第1章数据管理1.1引言数据管理的定义:是为了交付、控制、保护并提升数据和信息资产的价值,在其整个生命周期中制定计划、制度、规程和实践活动,并执行和监督的过程。数据管理专业人员的定义:是指从事数据管理各方面的工作(从数据全生命周期的技术管理工作,到确保数据的合理利用及发挥作用),并通过其工作1.1.1业务驱动因素数据管理的主要驱动力:使组织能够从其数据资产中获取价值。1.1.2目标1)理解并支撑企
- 华为“铁三角模式”在数据类项目中的应用和价值
数据运营新视界
华为数字化转型大数据技术大数据数据分析
引言:随着信息技术的飞速发展,企业纷纷踏上数字化转型的道路,希望通过数据分析和智能决策来提升企业竞争力。在这一过程中,数据类项目成为关键,它们旨在构建高效的数据治理和分析平台,为企业决策提供有力支持。然而,数据类项目的实施往往涉及多个部门和复杂的技术环节,需要高效的团队协作和科学的项目管理方法。在传统的项目管理模式中,不同部门之间往往存在沟通不畅、信息共享不及时等问题,导致项目进展缓慢、风险增加。
- 五、数据治理平台架构
moton2017
大数据治理大数据数据治理数据架构数据资产数据采集数据库DB采集
数据治理平台架构图核心思想:数据治理平台架构图描绘了一个数据资产平台,旨在帮助企业有效地管理和利用其数据资产。平台架构采用模块化设计,包括数据资产使用、数据资产分析、数据资产模型设计、数据资产管理/编目和数据资产采集等核心功能模块。数据治理平台架构图从上到下,从左到右,依次解析:1.应用层(最上层)企业全局数据资产:强调平台管理的是企业所有的数据资产,而非单一部门或应用的数据。升级影响:评估系统升
- 七.智慧城市数据治理平台架构
moton2017
大数据治理大数据数据架构数据库数据治理大数据治理数据分析智慧城市数据治理
一、整体架构概览智慧城市数据治理平台架构描绘了一个全面的智慧城市数据治理平台,旨在实现城市数据的统一管理、共享和应用,为城市运行、管理和决策提供数据支撑。整体架构呈现出分层、模块化、集约化的特点,并强调数据安全和标准规范。智慧城市数据治理平台架构二、核心模块解析1.城市驾驶舱统一数据管理门户:作为数据资源的统一入口,提供数据检索、申请、使用等服务。公共数据开放门户:向社会开放公共数据,支持数据目录
- 知识库管理中台架构:数据资产激活与企业效率跃升
Baklib-企业帮助文档
其他
内容概要现代企业知识库管理中台架构的演进已突破传统文档存储范式,转向以智能分类引擎与动态数据治理为核心的认知计算体系。基于AI驱动的语义解析技术与分布式大数据处理框架,该架构实现了非结构化数据的多模态特征提取与知识图谱映射。其中,Baklib在数字体验平台(DXP)领域展现的跨系统整合能力,通过API接口标准化设计打通了CRM、ERP等业务系统的数据孤岛,其多级权限管理体系与实时版本控制机制保障了
- 什么是数据治理以及它在大数据处理中的重要性
Java资深爱好者
java开发语言
数据治理(DataGovernance)是指在一定的组织范围内,依托制度法规、标准规范、应用实践和支撑技术对数据进行全生命周期的数据确权、质量管理、安全控制、隐私保护、开放共享、交易流通和分析处理。数据治理是组织中涉及数据使用的一整套管理行为,由企业数据治理部门发起并推行,关于如何制定和实施针对整个企业内部数据的商业应用和技术管理的一系列政策和流程。数据治理在大数据处理中的重要性提高数据质量:准确
- 【国产自研-神软大数据平台3.4.10】
王旭亮_
数据治理大数据技术栈大数据数据治理神软产品国产自研
产品介绍:北京神舟航天软件技术股份有限公司自研全栈式大数据平台神软大数据平台是数据全生命周期一站式数据治理开发平台,提供数据采集、数据集成、数据开发、数据治理、数据服务等功能,支持大数据存储、大数据计算分析引擎等数据底座,充分发挥数据价值作用,聚焦企业数字化转型,提升组织的信息化水平和高效应用决策。1、可以兼容并适配各种服务器(X86\ARM)、操作系统包括Centos、麒麟V10SP3、欧拉(o
- 数据仓库、数据湖和数据湖仓
阿湯哥
数据仓库spark大数据
数据仓库、数据湖和数据湖仓是三种常见的数据存储和管理技术,各自有不同的特点和适用场景。以下是它们的详细比较:1.数据仓库(DataWarehouse)定义:用于存储结构化数据,经过清洗、转换和建模,支持复杂的查询和分析。特点:结构化数据:主要处理关系型数据。预定义模式:数据在加载前需要定义模式(Schema-on-Write)。高性能查询:优化用于复杂查询和报表生成。数据治理:提供强大的数据治理和
- 数据治理DAMA方法论:数字化转型的数据驱动引擎
小四的快乐生活
大数据
数据治理概述定义数据治理是对数据资产管理行使权力和控制的活动集合,旨在确保数据的可用性、完整性、准确性、安全性和合规性,使数据能够为企业创造价值。这一过程涵盖数据战略规划、数据标准制定、数据质量管理、数据安全管理、元数据管理、主数据管理等多个关键领域。关键要素数据战略:明确数据在企业中的角色和价值,制定长期的数据发展方向和目标。例如,零售企业可能将数据驱动精准营销作为核心数据战略,借助分析消费者购
- 小胡说技书博客分类(部分目录):服务治理、数据治理与安全治理对比表格
小胡说技书
Java+SSM+DBData/Python杂谈/设计模式/报错微服务大数据数据治理安全人工智能
文章目录一、对比表格二、目录2.1服务2.2数据2.3安全一、对比表格下表从多个维度对服务治理、数据治理和安全治理进行详细对比,为读者提供一个直观而全面的参考框架。维度服务治理数据治理安全治理定义对软件开发全流程、应用交付及API和接口管理进行规范化管理,确保各服务间的高效协同与可靠运行。对数据从生成、采集、存储、处理到应用的全生命周期进行标准化管理,确保数据准确、一致和高质量。为企业所有技术流程
- Apache Iceberg 与 Apache Hudi:数据湖领域的双雄对决
夜里慢慢行456
大数据大数据
在数据存储和处理不断发展的领域中,数据湖仓的概念已经崭露头角,成为了一种变革性的力量。数据湖仓结合了数据仓库和数据湖的最佳元素,提供了一个统一的平台,支持数据科学、商业智能、人工智能/机器学习以及临时报告等多种关键功能。这种创新的方法不仅促进了实时分析,还显著降低了平台成本,增强了数据治理,并加速了用例的实现。数据存储和处理的演变催生了被称为数据湖仓的现代分析平台。这些平台旨在解决传统架构的局限性
- MES管理系统解决方案在制造企业中的实施路径
深蓝易网
数字工厂制造大数据人工智能数据分析运维
在制造业数字化转型的浪潮中,MES管理系统解决方案已成为企业实现智能制造的核心载体。对于面向应用场景的制造企业而言,实施MES管理系统需构建"战略规划-资源整合-数据治理-人才培养-效能验证"的全流程实施体系,方能确保系统价值的高效转化。一、战略导向的需求规划体系项目实施团队需通过"三维分析法"建立需求规划模型:纵向维度系统梳理企业现有工艺流程,横向维度对接供应商与客户端的协同需求,时间维度统筹企
- 【大数据治理】
局外人_Jia
大数据安全人工智能
大数据治理(BigDataGovernance)是指通过一系列策略、流程和技术手段,确保大数据的质量、安全性、合规性和可用性,从而最大化数据的价值。以下是大数据治理的核心内容、挑战和最佳实践:1.大数据治理的核心内容1.1数据质量管理确保数据的准确性、完整性、一致性和及时性。数据清洗:处理缺失值、重复数据和错误数据。数据验证:定义数据规则,确保数据符合业务需求。数据监控:实时监控数据质量,及时发现
- 数据治理:解锁商业价值的金钥匙
ShiTuanWang
java人工智能大数据数据治理数据挖掘安全
数据治理:解锁商业价值的深度探索在21世纪的商业版图中,数据已不再是简单的数字堆砌,而是转化为推动企业前进的燃料,驱动着决策制定、产品创新、市场洞察及运营效率等多个关键领域的变革。数据治理,作为这一变革的基石,其重要性日益凸显,成为企业实现长期成功与竞争优势的关键要素。本文旨在深入探讨数据治理在商业领域的广泛价值,揭示其如何成为企业解锁新商业机遇、提升运营效率、增强市场适应性的金钥匙。一、奠定决策
- 企业数据治理之主数据治理--组织主数据
小木谈数
企业数据治理大数据
一、组织主数据定义组织就是企业的组织架构,即企业的部门机构设置。比如企业一般指的公司,公司下面设置了各种各样的部门,有研发部门、生产部门、销售部门、服务部门等机构设置。现在一般企业把研发、销售都当作了核心部门,也叫价值部门,属于企业价值流层面的实现部门,也有企业把售后服务部门也包含进来了。而把生产部门、物流部门等称为使能部门,即为价值部门提供使能服务即驱动服务。而其他部门比如人力、财务等属于支撑层
- 如何学习大数据治理:轻松上手指南
狮歌~资深攻城狮
大数据技术学习大数据
如何学习大数据治理:轻松上手指南开场白:从零开始,不再迷茫你有没有过这样的经历?听到“大数据治理”这个词时,感觉脑袋里一团乱麻。别担心,今天咱们就来聊聊怎么从零开始学习大数据治理,让你也能成为这个领域的行家。什么是大数据治理?大数据治理就像是给你的数据世界制定一套规则和标准。想象一下,如果你有一堆杂乱无章的文件,每次找东西都像在大海捞针一样困难。大数据治理就是帮助你把这些文件整理得井井有条,让它们
- 想要转行ai赛道?看完这篇少走三年弯路!
大模型玩家
人工智能语言模型深度学习算法机器学习程序员转行
最近有朋友说,想转行ai赛道,做大模型之类的工作,不知道有哪些岗位。今天就来聊聊,AI大模型有哪些方向,新人怎么转行大模型赛道,让大家少走弯路,早日在AI领域如鱼得水!其实,在招聘网站上搜搜“大模型”,看看那些招聘要求,就能大概了解大模型工程师都有哪些方向了。主要分为下面这四类:数据治理方向:大模型数据工程师,主要负责爬虫、数据清洗、ETL、DataEngine、Pipeline这些工作。简单说,
- 大数据治理体系构建与关键技术实践
一ge科研小菜鸡
大数据大数据
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着信息技术的快速发展和数据规模的爆炸式增长,大数据已经成为各行业的核心资产。然而,数据质量低、数据孤岛、数据安全风险等问题日益突出,影响了数据的有效利用和价值挖掘。因此,大数据治理(BigDataGovernance)成为企业和政府机构提升数据管理能力、优化决策支持的重要手段。本篇文章将深入探讨大数据治理的体系构建、核心技术及其在实际应
- 领导层支持:构建负责任AI的基石
XianxinMao
人工智能机器学习
标题:领导层支持:构建负责任AI的基石文章信息摘要:实现负责任AI的基础在于领导层支持与AI原则的建立,这需要从高层开始构建治理结构,确保AI系统与伦理价值观一致。通过模型文档与事实表的透明化,提升AI系统的可信度,确保模型符合声明目标并在可接受范围内运行。数据质量与相关性是AI系统的核心,严格的数据治理和偏见检测与缓解措施是确保公平性和可靠性的关键。可解释性与可审计性则是建立用户信任的基础,复杂
- CDGA学习笔记一-《数据管理》与《数据治理》
wy_chriss
大数据
一、数据管理1.1引言数据是一种至关重要的企业资产,数据和信息能够帮助企业洞察顾客、产品和服务,帮助企业创新并实现其战略目标。但是,很少有组织将数据作为一项资产进行积极管理,并从中获得持续价值。从数据中获取价值,不可能凭空产生或者依赖于偶然,需要目标、规划、协作和保障,也需要管理和领导力。*考点(数据管理的概念)数据管理(DataManagement):是为了交付、控制、保护并提升数据和信息资产的
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio