<bean id="id01" class="com.atguigu.spring.bean.Monster" scope="prototype"/>
一个类应该只负责一项职责
示例
public class SingleResponsibility1 {
public static void main(String[] args) {
// TODO Auto-generated method stub
Vehicle vehicle = new Vehicle();
vehicle.run("摩托车");
vehicle.run("汽车");
vehicle.run("飞机");
}
}
// 交通工具类
// 方式1
// 1. 在方式1 的run方法中,违反了单一职责原则
// 2. 解决的方案非常的简单,根据交通工具运行方法不同,分解成不同类即可
class Vehicle {
public void run(String vehicle) {
System.out.println(vehicle + " 在公路上运行....");
}
}
public class SingleResponsibility2 {
public static void main(String[] args) {
// TODO Auto-generated method stub
RoadVehicle roadVehicle = new RoadVehicle();
roadVehicle.run("摩托车");
roadVehicle.run("汽车");
AirVehicle airVehicle = new AirVehicle();
airVehicle.run("飞机");
}
}
//方案2的分析
//1. 遵守单一职责原则
//2. 但是这样做的改动很大,即将类分解,同时修改客户端
//3. 改进:直接修改Vehicle 类,改动的代码会比较少=>方案3
class RoadVehicle {
public void run(String vehicle) {
System.out.println(vehicle + "公路运行");
}
}
class AirVehicle {
public void run(String vehicle) {
System.out.println(vehicle + "天空运行");
}
}
class WaterVehicle {
public void run(String vehicle) {
System.out.println(vehicle + "水中运行");
}
}
public class SingleResponsibility3 {
public static void main(String[] args) {
// TODO Auto-generated method stub
Vehicle2 vehicle2 = new Vehicle2();
vehicle2.run("汽车");
vehicle2.runWater("轮船");
vehicle2.runAir("飞机");
}
}
//方式3的分析
//1. 这种修改方法没有对原来的类做大的修改,只是增加方法
//2. 这里虽然没有在类这个级别上遵守单一职责原则,但是在方法级别上,仍然是遵守单一职责
class Vehicle2 {
public void run(String vehicle) {
//处理
System.out.println(vehicle + " 在公路上运行....");
}
public void runAir(String vehicle) {
System.out.println(vehicle + " 在天空上运行....");
}
public void runWater(String vehicle) {
System.out.println(vehicle + " 在水中行....");
}
//方法2.
//..
//..
}
一个类对另一个类的依赖应该建立在最小的接口
类 A 通过接口 Interface1 依赖类 B,类 C 通过接口 Interface1 依赖类 D,如果接口 Interface1 对于类 A 和类 C来说不是最小接口,那么类 B 和类 D 必须去实现他们不需要的方法。
按隔离原则应当这样处理:(重点)
将接口 Interface1 拆分为独立的几个接口(这里我们拆分成 3 个接口),类 A 和类 C 分别与他们需要的接口建立依赖关系。也就是采用接口隔离原则
1)高层模块不应该依赖低层模块,二者都应该依赖其抽象
2)抽象不应该依赖细节,细节应该依赖抽象
3)依赖倒转(倒置)的中心思想是面向接口编程
4)依赖倒转原则是基于这样的设计理念:相对于细节的多变性,抽象的东西要稳定的多。以抽象为基础搭建的架
构比以细节为基础的架构要稳定的多。在 java 中,抽象指的是接口或抽象类,细节就是具体的实现类
5)使用接口或抽象类的目的是制定好规范,而不涉及任何具体的操作,把展现细节的任务交给他们的实现类去完成
三种传递方式:
//实现对接口的依赖
public class DependecyInversion {
public static void main(String[] args) {
//客户端无需改变
Person person = new Person();
person.receive(new Email());
person.receive(new WeiXin());
}
}
//定义接口
interface IReceiver {
public String getInfo();
}
class Email implements IReceiver {
public String getInfo() {
return "电子邮件信息: hello,world";
}
}
//增加微信
class WeiXin implements IReceiver {
public String getInfo() {
return "微信信息: hello,ok";
}
}
//方式2
class Person {
//这里我们是对接口的依赖
public void receive(IReceiver receiver ) {
System.out.println(receiver.getInfo());
}
}
// 方式1: 通过接口传递实现依赖
public class DependencyPass {
public static void main(String[] args) {
// TODO Auto-generated method stub
ChangHong changHong = new ChangHong();
OpenAndClose openAndClose = new OpenAndClose();
openAndClose.open(changHong);
}
}
// 开关的接口
interface IOpenAndClose {
public void open(ITV tv); //抽象方法,接收接口
}
interface ITV { //ITV接口
public void play();
}
class ChangHong implements ITV {
@Override
public void play() {
// TODO Auto-generated method stub
System.out.println("长虹电视机,打开");
}
}
// 实现接口
class OpenAndClose implements IOpenAndClose {
public void open(ITV tv) {
tv.play();
}
}
//方式2:通过构造器传递
public class DependencyPass {
public static void main(String[] args) {
ChangHong changHong = new ChangHong();
OpenAndClose openAndClose = new OpenAndClose(changHong);
openAndClose.open();
}
}
interface ITV { //ITV接口
public void play();
}
class ChangHong implements ITV {
@Override
public void play() {
// TODO Auto-generated method stub
System.out.println("长虹电视机,打开");
}
}
interface IOpenAndClose {
public void open(); //抽象方法
}
class OpenAndClose implements IOpenAndClose {
public ITV tv; //成员
public OpenAndClose(ITV tv) { //构造器
this.tv = tv;
}
public void open() {
this.tv.play();
}
}
//方式3:通过setter方法进行依赖传递
public class DependencyPass {
public static void main(String[] args) {
ChangHong changHong = new ChangHong();
OpenAndClose openAndClose = new OpenAndClose();
openAndClose.setTv(changHong);
openAndClose.open();
}
}
interface IOpenAndClose {
public void open(); // 抽象方法
public void setTv(ITV tv);
}
interface ITV { // ITV接口
public void play();
}
class ChangHong implements ITV {
@Override
public void play() {
// TODO Auto-generated method stub
System.out.println("长虹电视机,打开");
}
}
class OpenAndClose implements IOpenAndClose {
private ITV tv;
public void setTv(ITV tv) {
this.tv = tv;
}
public void open() {
this.tv.play();
}
}
小结:
继承在给程序设计带来便利的同时,也带来了弊端。比如使用继承会给程序带来侵入性,程序的可移植性降低,增加对象间的耦合性,如果一个类被其他的类所继承,则当这个类需要修改时,必须考虑到所有的子类,并且父类修改后,所有涉及到子类的功能都有可能产生故障
- 如果对每个类型为 T1 的对象 o1,都有类型为 T2 的对象 o2,使得以 T1 定义的所有程序 P 在所有的对象 o1 都代换成 o2 时,程序 P 的行为没有发生变化,那么类型 T2 是类型 T1 的子类型。换句话说,所有引用基类的地方必须能透明地使用其子类的对象。
- 在使用继承时,遵循里氏替换原则,在子类中尽量不要重写父类的方法
- 里氏替换原则告诉我们,继承实际上让两个类耦合性增强了,在适当的情况下,可以通过聚合,组合,依赖 来解决问题。
问题示例:
public class Liskov {
public static void main(String[] args) {
// TODO Auto-generated method stub
A a = new A();
System.out.println("11-3=" + a.func1(11, 3));
System.out.println("1-8=" + a.func1(1, 8));
System.out.println("-----------------------");
B b = new B();
System.out.println("11-3=" + b.func1(11, 3));//这里本意是求出11-3
System.out.println("1-8=" + b.func1(1, 8));// 1-8
System.out.println("11+3+9=" + b.func2(11, 3));
}
}
// A类
class A {
// 返回两个数的差
public int func1(int num1, int num2) {
return num1 - num2;
}
}
// B类继承了A
// 增加了一个新功能:完成两个数相加,然后和9求和
class B extends A {
//这里,重写了A类的方法, 可能是无意识
public int func1(int a, int b) {
return a + b;
}
public int func2(int a, int b) {
return func1(a, b) + 9;
}
}
使用里氏替换:
public class Liskov {
public static void main(String[] args) {
// TODO Auto-generated method stub
A a = new A();
System.out.println("11-3=" + a.func1(11, 3));
System.out.println("1-8=" + a.func1(1, 8));
System.out.println("-----------------------");
B b = new B();
//因为B类不再继承A类,因此调用者,不会再func1是求减法
//调用完成的功能就会很明确
System.out.println("11+3=" + b.func1(11, 3));//这里本意是求出11+3
System.out.println("1+8=" + b.func1(1, 8));// 1+8
System.out.println("11+3+9=" + b.func2(11, 3));
//使用组合仍然可以使用到A类相关方法
System.out.println("11-3=" + b.func3(11, 3));// 这里本意是求出11-3
}
}
//创建一个更加基础的基类
class Base {
//把更加基础的方法和成员写到Base类
}
// A类
class A extends Base {
// 返回两个数的差
public int func1(int num1, int num2) {
return num1 - num2;
}
}
// B类继承了A
// 增加了一个新功能:完成两个数相加,然后和9求和
class B extends Base {
//如果B需要使用A类的方法,使用组合关系
private A a = new A();
//这里,重写了A类的方法, 可能是无意识
public int func1(int a, int b) {
return a + b;
}
public int func2(int a, int b) {
return func1(a, b) + 9;
}
//我们仍然想使用A的方法
public int func3(int a, int b) {
return this.a.func1(a, b);
}
}
最基础、最重要的设计原则
- 一个软件实体如类,模块和函数应该对扩展开放(对提供方),对修改关闭(对使用方)。用抽象构建框架,用实现扩展细节。
- 当软件需要变化时,尽量通过扩展软件实体的行为来实现变化,而不是通过修改已有的代码来实现变化。
- 编程中遵循其它原则,以及使用设计模式的目的就是遵循开闭原则
//看看存在的问题
public class Ocp {
public static void main(String[] args) {
//使用看看存在的问题
GraphicEditor graphicEditor = new GraphicEditor();
graphicEditor.drawShape(new Rectangle());
graphicEditor.drawShape(new Circle());
graphicEditor.drawShape(new Triangle());
}
}
//这是一个用于绘图的类 [使用方]
class GraphicEditor {
//接收Shape对象,然后根据type,来绘制不同的图形
public void drawShape(Shape s) {
if (s.m_type == 1)
drawRectangle(s);
else if (s.m_type == 2)
drawCircle(s);
else if (s.m_type == 3)
drawTriangle(s);
}
//绘制矩形
public void drawRectangle(Shape r) {
System.out.println(" 绘制矩形 ");
}
//绘制圆形
public void drawCircle(Shape r) {
System.out.println(" 绘制圆形 ");
}
//绘制三角形
public void drawTriangle(Shape r) {
System.out.println(" 绘制三角形 ");
}
}
//Shape类,基类
class Shape {
int m_type;
}
class Rectangle extends Shape {
Rectangle() {
super.m_type = 1;
}
}
class Circle extends Shape {
Circle() {
super.m_type = 2;
}
}
//新增画三角形
class Triangle extends Shape {
Triangle() {
super.m_type = 3;
}
}
public class Ocp {
public static void main(String[] args) {
//使用看看存在的问题
GraphicEditor graphicEditor = new GraphicEditor();
graphicEditor.drawShape(new Rectangle());
graphicEditor.drawShape(new Circle());
graphicEditor.drawShape(new Triangle());
graphicEditor.drawShape(new OtherGraphic());
}
}
//这是一个用于绘图的类 [使用方]
class GraphicEditor {
//接收Shape对象,调用draw方法
public void drawShape(Shape s) {
s.draw();
}
}
//Shape类,基类
abstract class Shape {
int m_type;
public abstract void draw();//抽象方法
}
class Rectangle extends Shape {
Rectangle() {
super.m_type = 1;
}
@Override
public void draw() {
// TODO Auto-generated method stub
System.out.println(" 绘制矩形 ");
}
}
class Circle extends Shape {
Circle() {
super.m_type = 2;
}
@Override
public void draw() {
// TODO Auto-generated method stub
System.out.println(" 绘制圆形 ");
}
}
//新增画三角形
class Triangle extends Shape {
Triangle() {
super.m_type = 3;
}
@Override
public void draw() {
// TODO Auto-generated method stub
System.out.println(" 绘制三角形 ");
}
}
//新增一个图形
class OtherGraphic extends Shape {
OtherGraphic() {
super.m_type = 4;
}
@Override
public void draw() {
// TODO Auto-generated method stub
System.out.println(" 绘制其它图形 ");
}
}
- 一个对象应该对其他对象保持最少的了解
- 类与类关系越密切,耦合度越大
- 迪米特法则(Demeter Principle)又叫最少知道原则,即一个类对自己依赖的类知道的越少越好。也就是说,对于被依赖的类不管多么复杂,都尽量将逻辑封装在类的内部。对外除了提供的 public 方法,不对外泄露任何信息
- 迪米特法则还有个更简单的定义:只与直接的朋友通信
- 直接的朋友:每个对象都会与其他对象有耦合关系,只要两个对象之间有耦合关系,我们就说这两个对象之间是朋友关系。耦合的方式很多,依赖,关联,组合,聚合等。其中,我们称出现成员变量,方法参数,方法返回值中的类为直接的朋友,而出现在局部变量中的类不是直接的朋友。也就是说,陌生的类最好不要以局部变量的形式出现在类的内部。
//客户端
public class Demeter1 {
public static void main(String[] args) {
//创建了一个 SchoolManager 对象
SchoolManager schoolManager = new SchoolManager();
//输出学院的员工id 和 学校总部的员工信息
schoolManager.printAllEmployee(new CollegeManager());
}
}
//学校总部员工类
class Employee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
//学院的员工类
class CollegeEmployee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
//管理学院员工的管理类
class CollegeManager {
//返回学院的所有员工
public List<CollegeEmployee> getAllEmployee() {
List<CollegeEmployee> list = new ArrayList<CollegeEmployee>();
for (int i = 0; i < 10; i++) { //这里我们增加了10个员工到 list
CollegeEmployee emp = new CollegeEmployee();
emp.setId("学院员工id= " + i);
list.add(emp);
}
return list;
}
}
//学校管理类
//分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
//CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则
class SchoolManager {
//返回学校总部的员工
public List<Employee> getAllEmployee() {
List<Employee> list = new ArrayList<Employee>();
for (int i = 0; i < 5; i++) { //这里我们增加了5个员工到 list
Employee emp = new Employee();
emp.setId("学校总部员工id= " + i);
list.add(emp);
}
return list;
}
//该方法完成输出学校总部和学院员工信息(id)
void printAllEmployee(CollegeManager sub) {
//分析问题
//1. 这里的 CollegeEmployee 不是 SchoolManager的直接朋友
//2. CollegeEmployee 是以局部变量方式出现在 SchoolManager
//3. 违反了 迪米特法则
//获取到学院员工
List<CollegeEmployee> list1 = sub.getAllEmployee();
System.out.println("------------学院员工------------");
for (CollegeEmployee e : list1) {
System.out.println(e.getId());
}
//获取到学校总部员工
List<Employee> list2 = this.getAllEmployee();
System.out.println("------------学校总部员工------------");
for (Employee e : list2) {
System.out.println(e.getId());
}
}
}
//客户端
public class Demeter1 {
public static void main(String[] args) {
System.out.println("~~~使用迪米特法则的改进~~~");
//创建了一个 SchoolManager 对象
SchoolManager schoolManager = new SchoolManager();
//输出学院的员工id 和 学校总部的员工信息
schoolManager.printAllEmployee(new CollegeManager());
}
}
//学校总部员工类
class Employee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
//学院的员工类
class CollegeEmployee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
//管理学院员工的管理类
class CollegeManager {
//返回学院的所有员工
public List<CollegeEmployee> getAllEmployee() {
List<CollegeEmployee> list = new ArrayList<CollegeEmployee>();
for (int i = 0; i < 10; i++) { //这里我们增加了10个员工到 list
CollegeEmployee emp = new CollegeEmployee();
emp.setId("学院员工id= " + i);
list.add(emp);
}
return list;
}
//输出学院员工的信息
public void printEmployee() {
//获取到学院员工
List<CollegeEmployee> list1 = getAllEmployee();
System.out.println("------------学院员工------------");
for (CollegeEmployee e : list1) {
System.out.println(e.getId());
}
}
}
//学校管理类
//分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
//CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则
class SchoolManager {
//返回学校总部的员工
public List<Employee> getAllEmployee() {
List<Employee> list = new ArrayList<Employee>();
for (int i = 0; i < 5; i++) { //这里我们增加了5个员工到 list
Employee emp = new Employee();
emp.setId("学校总部员工id= " + i);
list.add(emp);
}
return list;
}
//该方法完成输出学校总部和学院员工信息(id)
void printAllEmployee(CollegeManager sub) {
//分析问题
//1. 将输出学院的员工方法,封装到CollegeManager
sub.printEmployee();
//获取到学校总部员工
List<Employee> list2 = this.getAllEmployee();
System.out.println("------------学校总部员工------------");
for (Employee e : list2) {
System.out.println(e.getId());
}
}
}
注意事项: