一、启动
1.spark-submit分析
在Linux是一个脚本,内容很简单,如下:
if [ -z "${SPARK_HOME}" ]; then
export SPARK_HOME="$(cd "`dirname "$0"`"/..; pwd)"
fi
就是找到spark-submit命令所在的目录,然后进行上一层,并赋值给SPARK_HOME
禁用Python 3.3+中字符串的随机哈希,没关注,不知道为啥这样干
export PYTHONHASHSEED=0
以下这行重点来:
exec "${SPARK_HOME}"/bin/spark-class org.apache.spark.deploy.SparkSubmit "$@"
用spark-class 命令,参数为 org.apache.spark.deploy.SparkSubmit 附加上所有参数
2.spark-class分析
重点代码如下:
# 加载环境变量
. "${SPARK_HOME}"/bin/load-spark-env.sh
# 找到java命令
if [ -n "${JAVA_HOME}" ]; then
RUNNER="${JAVA_HOME}/bin/java"
else
if [ `command -v java` ]; then
RUNNER="java"
else
echo "JAVA_HOME is not set" >&2
exit 1
fi
fi
# 查找 assembly jar 这意味着任务提交时无需将该JAR文件打包
SPARK_ASSEMBLY_JAR=
if [ -f "${SPARK_HOME}/RELEASE" ]; then
ASSEMBLY_DIR="${SPARK_HOME}/lib"
else
ASSEMBLY_DIR="${SPARK_HOME}/assembly/target/scala-$SPARK_SCALA_VERSION"
fi
GREP_OPTIONS=
num_jars="$(ls -1 "$ASSEMBLY_DIR" | grep "^spark-assembly.*hadoop.*\.jar$" | wc -l)"
if [ "$num_jars" -eq "0" -a -z "$SPARK_ASSEMBLY_JAR" -a "$SPARK_PREPEND_CLASSES" != "1" ]; then
echo "Failed to find Spark assembly in $ASSEMBLY_DIR." 1>&2
echo "You need to build Spark before running this program." 1>&2
exit 1
fi
if [ -d "$ASSEMBLY_DIR" ]; then
ASSEMBLY_JARS="$(ls -1 "$ASSEMBLY_DIR" | grep "^spark-assembly.*hadoop.*\.jar$" || true)"
if [ "$num_jars" -gt "1" ]; then
echo "Found multiple Spark assembly jars in $ASSEMBLY_DIR:" 1>&2
echo "$ASSEMBLY_JARS" 1>&2
echo "Please remove all but one jar." 1>&2
exit 1
fi
fi
SPARK_ASSEMBLY_JAR="${ASSEMBLY_DIR}/${ASSEMBLY_JARS}"
# 指定了assembly_jar包
LAUNCH_CLASSPATH="$SPARK_ASSEMBLY_JAR"
# 添加启动器目录
if [ -n "$SPARK_PREPEND_CLASSES" ]; then
LAUNCH_CLASSPATH="${SPARK_HOME}/launcher/target/scala-$SPARK_SCALA_VERSION/classes:$LAUNCH_CLASSPATH"
fi
export _SPARK_ASSEMBLY="$SPARK_ASSEMBLY_JAR"
CLSSPATH 已经准备好了,下面开始构建java -cp 命令启动java程序
CMD=()
while IFS= read -d '' -r ARG; do
CMD+=("$ARG")
#执行 org.apache.spark.launcher.Main作为Spark应用程序的主入口
done < <("$RUNNER" -cp "$LAUNCH_CLASSPATH" org.apache.spark.launcher.Main "$@")
exec "${CMD[@]}"
可以看到,使用 org.apache.spark.launcher.Main类启动org.apache.spark.deploy.SparkSubmit来启动用户的应用
3.org.apache.spark.launcher.Main 分析
主要代码如下:
public static void main(String[] argsArray) throws Exception {
boolean printLaunchCommand = !isEmpty(System.getenv("SPARK_PRINT_LAUNCH_COMMAND"));
List args = new ArrayList(Arrays.asList(argsArray));
String className = args.remove(0);
AbstractCommandBuilder builder;
if (className.equals("org.apache.spark.deploy.SparkSubmit")) {
builder = new SparkSubmitCommandBuilder(args);
List help = new ArrayList();
if (parser.className != null) {
help.add(parser.CLASS);
help.add(parser.className);
}
help.add(parser.USAGE_ERROR);
builder = new SparkSubmitCommandBuilder(help);
}
} else {
builder = new SparkClassCommandBuilder(className, args);
}
Map env = new HashMap();
List cmd = builder.buildCommand(env);
List bashCmd = prepareBashCommand(cmd, env);
for (String c : bashCmd) {
System.out.print(c);
System.out.print('\0');
}
}
我们可以设定环境变量
export SPARK_PRINT_LAUNCH_COMMAND=1
执行spark-submit 来看看这个程序是如何处的,将在终端打印出下启动命令
Spark Command:
/opt/alanx/jdk/bin/java -cp \
/opt/alanx/spark/spark/conf/:\
/opt/alanx/spark/spark/lib/spark-assembly-hadoop.jar:\
/opt/alanx/hadoop/hadoop/etc/hadoop/:\
/opt/alanx/hadoop/hadoop/etc/hadoop/:\
/opt/alanx/kafka/kafka/libs/*.jar:\
/opt/alanx/hadoop/hadoop/etc/hadoop/:\
/opt/alanx/hadoop/hadoop/share/hadoop/common/lib/*:\
/opt/alanx/hadoop/hadoop/share/hadoop/common/*:\
/opt/alanx/hadoop/hadoop/share/hadoop/hdfs/:\
/opt/alanx/hadoop/hadoop/share/hadoop/hdfs/lib/*:\
/opt/alanx/hadoop/hadoop/share/hadoop/hdfs/*:\
/opt/alanx/hadoop/hadoop/share/hadoop/yarn/lib/*:\
/opt/alanx/hadoop/hadoop/share/hadoop/yarn/*:\
/opt/alanx/hadoop/hadoop/share/hadoop/mapreduce/lib/*:\
/opt/alanx/hadoop/hadoop/share/hadoop/mapreduce/*:\
/opt/alanx/hadoop/hadoop/contrib/capacity-scheduler/*.jar
-Xms1g -Xmx1g -XX:MaxPermSize=256m org.apache.spark.deploy.SparkSubmit \
--name '$(应用名称)'\
--class $(入口类)\
--master yarn\
--deploy-mode cluster\
--driver-memory 4g\
--executor-memory 4g\
--executor-cores 4\
--num-executors 8\
--queue thequeue\
$(应用程序的jar包)
可以看出来,根据配置,把所有依赖的java包全部加入命令中的-cp中。 然后启动 org.apache.spark.deploy.SparkSubmit 来启动用户的应用程序。
4.org.apache.spark.deploy.SparkSubmit 分析
main函数如下:
def main(args: Array[String]): Unit = {
val appArgs = new SparkSubmitArguments(args)
appArgs.action match {
case SparkSubmitAction.SUBMIT => submit(appArgs)
case SparkSubmitAction.KILL => kill(appArgs)
case SparkSubmitAction.REQUEST_STATUS => requestStatus(appArgs)
}
}
没什么可看的,直接看submit 函数
private def submit(args: SparkSubmitArguments): Unit = {
val (childArgs, childClasspath, sysProps, childMainClass) = prepareSubmitEnvironment(args)
def doRunMain(): Unit = {
runMain(childArgs, childClasspath, sysProps, childMainClass, args.verbose)
}
doRunMain()
}
该函数也没什么,把参数直传给了runMain函数,跟踪下去
private def runMain(
childArgs: Seq[String],
childClasspath: Seq[String],
sysProps: Map[String, String],
childMainClass: String,
verbose: Boolean): Unit = {
val loader =
if (sysProps.getOrElse("spark.driver.userClassPathFirst", "false").toBoolean) {
new ChildFirstURLClassLoader(new Array[URL](0),
Thread.currentThread.getContextClassLoader)
} else {
new MutableURLClassLoader(new Array[URL](0),
Thread.currentThread.getContextClassLoader)
}
Thread.currentThread.setContextClassLoader(loader)
for (jar <- childClasspath) {
addJarToClasspath(jar, loader)
}
for ((key, value) <- sysProps) {
System.setProperty(key, value)
}
var mainClass: Class[_] = null
mainClass = Utils.classForName(childMainClass)
val mainMethod = mainClass.getMethod("main", new Array[String](0).getClass)
mainMethod.invoke(null, childArgs.toArray)
}
该部分用的了反射的方法,取出用户提交的类的main函数,然后通过invoke调用。对于invoke请自行搜索相关主题。