应用程序加载

1、问题引入

创建一个程序main.m代码:

__attribute__ ((constructor)) void func1(){
    NSLog(@"%s",__func__);
}

int main(int argc, char * argv[]) {
    NSLog(@"%s",__func__);
    NSString * appDelegateClassName;
    @autoreleasepool {
        // Setup code that might create autoreleased objects goes here.
        appDelegateClassName = NSStringFromClass([AppDelegate class]);
    }
    return UIApplicationMain(argc, argv, nil, appDelegateClassName);
}

ViewController.m代码:

+ (void)load{
    NSLog(@"%s",__func__);
}

运行查看打印顺序


打印顺序.png

2、开始分析

load方法添加断点查看下函数调用顺序:

load方法堆栈打印.png

从苹果的opensource网站下载dyld-750.6版本进行分析,搜索dyld_start

dyld_start搜索.png

dyld_start方法是通过汇编编写的,通过注释可知,里面调用了dyldbootstrap::start方法,此方法通过搜索dyldbootstrap,在文件中搜索start可获取到。

dyldbootstrap.png

方法里面调用dyld::_main()方法,也证明了load方法的调用堆栈。
由于dyld::_main()方法过长总结下主要步骤:

uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide, 
        int argc, const char* argv[], const char* envp[], const char* apple[], 
        uintptr_t* startGlue)
{
...
        // 1> 环境变量配置
        // 检查设置的环境变量
        checkEnvironmentVariables(envp);
        // 设置默认值
        defaultUninitializedFallbackPaths(envp);

...
        // 2> 共享缓存  检查是否开启,缓存是否映射到共享区域。
checkSharedRegionDisable((dyld3::MachOLoaded*)mainExecutableMH, mainExecutableSlide);
    if ( gLinkContext.sharedRegionMode != ImageLoader::kDontUseSharedRegion ) {
#if TARGET_OS_SIMULATOR
        if ( sSharedCacheOverrideDir)
            mapSharedCache();
#else
    // 映射到共享区域
        mapSharedCache();
#endif
...

        // 3> 主程序初始化   加载可执行文件,并生成一个ImageLoaderMachO 实例对象。
        sMainExecutable = instantiateFromLoadedImage(mainExecutableMH, mainExecutableSlide, sExecPath);
        gLinkContext.mainExecutable = sMainExecutable;
        gLinkContext.mainExecutableCodeSigned = hasCodeSignatureLoadCommand(mainExecutableMH);

}
...
        // 4> 插入动态库  加入所有DYLD_INSERT_LIBRARIES指定库
        if  ( sEnv.DYLD_INSERT_LIBRARIES != NULL ) {
            for (const char* const* lib = sEnv.DYLD_INSERT_LIBRARIES; *lib != NULL; ++lib) 
                loadInsertedDylib(*lib);
        }
...
        // 5> 链接主程序
        link(sMainExecutable, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
        sMainExecutable->setNeverUnloadRecursive();
        if ( sMainExecutable->forceFlat() ) {
            gLinkContext.bindFlat = true;
            gLinkContext.prebindUsage = ImageLoader::kUseNoPrebinding;
        }
        // 6> 链接动态库
        if ( sInsertedDylibCount > 0 ) {
            for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
                ImageLoader* image = sAllImages[i+1];
                link(image, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
                image->setNeverUnloadRecursive();
            }
            if ( gLinkContext.allowInterposing ) {
                // only INSERTED libraries can interpose
                // register interposing info after all inserted libraries are bound so chaining works
                for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
                    ImageLoader* image = sAllImages[i+1];
                    image->registerInterposing(gLinkContext);
                }
            }
        }
...
        // 7> 弱符号绑定
        sMainExecutable->weakBind(gLinkContext);
...
        // 8> 执行初始化方法
        initializeMainExecutable(); 
... 
        // 9> 调用main函数
    
      // find entry point for main executable
        result = (uintptr_t)sMainExecutable->getEntryFromLC_MAIN();
        if ( result != 0 ) {
            // main executable uses LC_MAIN, we need to use helper in libdyld to call into main()
            if ( (gLibSystemHelpers != NULL) && (gLibSystemHelpers->version >= 9) )
                    *startGlue = (uintptr_t)gLibSystemHelpers->startGlueToCallExit;
                else
                    halt("libdyld.dylib support not present for LC_MAIN");
            }
            else {
                // main executable uses LC_UNIXTHREAD, dyld needs to let "start" in program set up for main()
                result = (uintptr_t)sMainExecutable->getEntryFromLC_UNIXTHREAD();
                *startGlue = 0;
            }
主要分析下第八步执行初始化方法:
void initializeMainExecutable()
{
    // record that we've reached this step
    gLinkContext.startedInitializingMainExecutable = true;

    // run initialzers for any inserted dylibs 为所有插入的dyldlib调用initialzers
    ImageLoader::InitializerTimingList initializerTimes[allImagesCount()];
    initializerTimes[0].count = 0;
    const size_t rootCount = sImageRoots.size();
    if ( rootCount > 1 ) {
        for(size_t i=1; i < rootCount; ++i) {
            sImageRoots[i]->runInitializers(gLinkContext, initializerTimes[0]);
        }
    }
    
    // run initializers for main executable and everything it brings up
    // 运行主可执行文件及其所引发的所有内容的初始化程序
    sMainExecutable->runInitializers(gLinkContext, initializerTimes[0]);
    
    // register cxa_atexit() handler to run static terminators in all loaded images when this process exits
    if ( gLibSystemHelpers != NULL ) 
        (*gLibSystemHelpers->cxa_atexit)(&runAllStaticTerminators, NULL, NULL);

    // dump info if requested
    if ( sEnv.DYLD_PRINT_STATISTICS )
        ImageLoader::printStatistics((unsigned int)allImagesCount(), initializerTimes[0]);
    if ( sEnv.DYLD_PRINT_STATISTICS_DETAILS )
        ImageLoaderMachO::printStatisticsDetails((unsigned int)allImagesCount(), initializerTimes[0]);

通过方法可知通过循环调用runInitializers(gLinkContext, initializerTimes[0]);方法

void runInitializers(ImageLoader* image)
{
    // do bottom up initialization
    ImageLoader::InitializerTimingList initializerTimes[allImagesCount()];
    initializerTimes[0].count = 0;
    image->runInitializers(gLinkContext, initializerTimes[0]);
}

主要为image->runInitializers方法继续往下找

void ImageLoader::runInitializers(const LinkContext& context, InitializerTimingList& timingInfo)
{
    uint64_t t1 = mach_absolute_time();
    mach_port_t thisThread = mach_thread_self();
    ImageLoader::UninitedUpwards up;
    up.count = 1;
    up.imagesAndPaths[0] = { this, this->getPath() };
    processInitializers(context, thisThread, timingInfo, up);
    context.notifyBatch(dyld_image_state_initialized, false);
    mach_port_deallocate(mach_task_self(), thisThread);
    uint64_t t2 = mach_absolute_time();
    fgTotalInitTime += (t2 - t1);
}

找到主要函数processInitializers

void ImageLoader::processInitializers(const LinkContext& context, mach_port_t thisThread,
                                     InitializerTimingList& timingInfo, ImageLoader::UninitedUpwards& images)
{
    uint32_t maxImageCount = context.imageCount()+2;
    ImageLoader::UninitedUpwards upsBuffer[maxImageCount];
    ImageLoader::UninitedUpwards& ups = upsBuffer[0];
    ups.count = 0;
    // Calling recursive init on all images in images list, building a new list of
    // uninitialized upward dependencies.
    // 对images列表中的所有映像调用recursive init,构建新的未初始化的向上依赖项。
    for (uintptr_t i=0; i < images.count; ++i) {
        images.imagesAndPaths[i].first->recursiveInitialization(context, thisThread, images.imagesAndPaths[i].second, timingInfo, ups);
    }
    // If any upward dependencies remain, init them.
    if ( ups.count > 0 )
        processInitializers(context, thisThread, timingInfo, ups);
}

找到主要函数recursiveInitialization继续分析

void ImageLoader::recursiveInitialization(const LinkContext& context, mach_port_t this_thread, const char* pathToInitialize,
                                          InitializerTimingList& timingInfo, UninitedUpwards& uninitUps)
{
    recursive_lock lock_info(this_thread);
    recursiveSpinLock(lock_info);

    if ( fState < dyld_image_state_dependents_initialized-1 ) {
        uint8_t oldState = fState;
        // break cycles
        fState = dyld_image_state_dependents_initialized-1;
        try {
            // initialize lower level libraries first
            for(unsigned int i=0; i < libraryCount(); ++i) {
                ImageLoader* dependentImage = libImage(i);
                if ( dependentImage != NULL ) {
                    // don't try to initialize stuff "above" me yet
                    if ( libIsUpward(i) ) {
                        uninitUps.imagesAndPaths[uninitUps.count] = { dependentImage, libPath(i) };
                        uninitUps.count++;
                    }
                    else if ( dependentImage->fDepth >= fDepth ) {
                        dependentImage->recursiveInitialization(context, this_thread, libPath(i), timingInfo, uninitUps);
                    }
                }
            }
            
            // record termination order
            if ( this->needsTermination() )
                context.terminationRecorder(this);

            // let objc know we are about to initialize this image
            uint64_t t1 = mach_absolute_time();
            fState = dyld_image_state_dependents_initialized;
            oldState = fState;
            context.notifySingle(dyld_image_state_dependents_initialized, this, &timingInfo);
            
            // initialize this image
            bool hasInitializers = this->doInitialization(context);

            // let anyone know we finished initializing this image
            fState = dyld_image_state_initialized;
            oldState = fState;
            context.notifySingle(dyld_image_state_initialized, this, NULL);
            
            if ( hasInitializers ) {
                uint64_t t2 = mach_absolute_time();
                timingInfo.addTime(this->getShortName(), t2-t1);
            }
        }
        catch (const char* msg) {
            // this image is not initialized
            fState = oldState;
            recursiveSpinUnLock();
            throw;
        }
    }
    
    recursiveSpinUnLock();
}

主要为notifySingle函数和doInitialization函数,先看下第一个

static void notifySingle(dyld_image_states state, const ImageLoader* image, ImageLoader::InitializerTimingList* timingInfo)
{
    //dyld::log("notifySingle(state=%d, image=%s)\n", state, image->getPath());
    std::vector* handlers = stateToHandlers(state, sSingleHandlers);
    if ( handlers != NULL ) {
        dyld_image_info info;
        info.imageLoadAddress   = image->machHeader();
        info.imageFilePath      = image->getRealPath();
        info.imageFileModDate   = image->lastModified();
        for (std::vector::iterator it = handlers->begin(); it != handlers->end(); ++it) {
            const char* result = (*it)(state, 1, &info);
            if ( (result != NULL) && (state == dyld_image_state_mapped) ) {
                //fprintf(stderr, "  image rejected by handler=%p\n", *it);
                // make copy of thrown string so that later catch clauses can free it
                const char* str = strdup(result);
                throw str;
            }
        }
    }
    if ( state == dyld_image_state_mapped ) {
        //  Save load addr + UUID for images from outside the shared cache
        if ( !image->inSharedCache() ) {
            dyld_uuid_info info;
            if ( image->getUUID(info.imageUUID) ) {
                info.imageLoadAddress = image->machHeader();
                addNonSharedCacheImageUUID(info);
            }
        }
    }
    if ( (state == dyld_image_state_dependents_initialized) && (sNotifyObjCInit != NULL) && image->notifyObjC() ) {
        uint64_t t0 = mach_absolute_time();
        dyld3::ScopedTimer timer(DBG_DYLD_TIMING_OBJC_INIT, (uint64_t)image->machHeader(), 0, 0);
        (*sNotifyObjCInit)(image->getRealPath(), image->machHeader());
        uint64_t t1 = mach_absolute_time();
        uint64_t t2 = mach_absolute_time();
        uint64_t timeInObjC = t1-t0;
        uint64_t emptyTime = (t2-t1)*100;
        if ( (timeInObjC > emptyTime) && (timingInfo != NULL) ) {
            timingInfo->addTime(image->getShortName(), timeInObjC);
        }
    }
    // mach message csdlc about dynamically unloaded images
    if ( image->addFuncNotified() && (state == dyld_image_state_terminated) ) {
        notifyKernel(*image, false);
        const struct mach_header* loadAddress[] = { image->machHeader() };
        const char* loadPath[] = { image->getPath() };
        notifyMonitoringDyld(true, 1, loadAddress, loadPath);
    }
}

主要为(*sNotifyObjCInit)(image->getRealPath(), image->machHeader());这行函数,搜索下找到赋值的地方

void registerObjCNotifiers(_dyld_objc_notify_mapped mapped, _dyld_objc_notify_init init, _dyld_objc_notify_unmapped unmapped)
{
    // record functions to call
    sNotifyObjCMapped   = mapped;
    sNotifyObjCInit     = init;
    sNotifyObjCUnmapped = unmapped;
    ...
}

再找

void _dyld_objc_notify_register(_dyld_objc_notify_mapped    mapped,
                                _dyld_objc_notify_init      init,
                                _dyld_objc_notify_unmapped  unmapped)
{
    dyld::registerObjCNotifiers(mapped, init, unmapped);
}

_dyld_objc_notify_registerlldb源码中没有找到,我们从objc源码中寻找下。

_dyld_objc_notify_register.png

init相当于load_images方法

load_images(const char *path __unused, const struct mach_header *mh)
{
    // Return without taking locks if there are no +load methods here.
    if (!hasLoadMethods((const headerType *)mh)) return;

    recursive_mutex_locker_t lock(loadMethodLock);

    // Discover load methods
    {
        mutex_locker_t lock2(runtimeLock);
        prepare_load_methods((const headerType *)mh);
    }

    // Call +load methods (without runtimeLock - re-entrant)
    call_load_methods();
}

通过call_load_methods方法循环调用load方法

static void call_class_loads(void)
{
    int i;
    
    // Detach current loadable list.
    struct loadable_class *classes = loadable_classes;
    int used = loadable_classes_used;
    loadable_classes = nil;
    loadable_classes_allocated = 0;
    loadable_classes_used = 0;
    
    // Call all +loads for the detached list.
    for (i = 0; i < used; i++) {
        Class cls = classes[i].cls;
        load_method_t load_method = (load_method_t)classes[i].method;
        if (!cls) continue; 

        if (PrintLoading) {
            _objc_inform("LOAD: +[%s load]\n", cls->nameForLogging());
        }
        (*load_method)(cls, SEL_load);
    }
    
    // Destroy the detached list.
    if (classes) free(classes);
}

添加_objc_init断点查看函数调用栈

_objc_init.png

其中里面包含doInitialization方法查找dyld工程

bool ImageLoaderMachO::doInitialization(const LinkContext& context)
{
    CRSetCrashLogMessage2(this->getPath());

    // mach-o has -init and static initializers
    doImageInit(context);
    doModInitFunctions(context);
    
    CRSetCrashLogMessage2(NULL);
    
    return (fHasDashInit || fHasInitializers);
}

查看doImageInit源码和刚才的函数调用栈信息结合,确实libSystem initializer先执行

ImageLoaderMachO.png

查看libSystem库代码

__attribute__((constructor))
static void
libSystem_initializer(int argc,
              const char* argv[],
              const char* envp[],
              const char* apple[],
              const struct ProgramVars* vars)
{
...
    _dyld_initializer();

    libdispatch_init(); // from libdispatch.dylib
...
}

查看libdispatch代码

void
libdispatch_init(void)
{
...
    _dispatch_hw_config_init();
    _dispatch_time_init();
    _dispatch_vtable_init();
    _os_object_init(); // 继续查看
    _voucher_init();
...
}
_os_object_init(void)
{
    _objc_init(); // 找到调用
    Block_callbacks_RR callbacks = {
        sizeof(Block_callbacks_RR),
        (void (*)(const void *))&objc_retain,
        (void (*)(const void *))&objc_release,
        (void (*)(const void *))&_os_objc_destructInstance
    };
    _Block_use_RR2(&callbacks);
#if DISPATCH_COCOA_COMPAT
    const char *v = getenv("OBJC_DEBUG_MISSING_POOLS");
    if (v) _os_object_debug_missing_pools = _dispatch_parse_bool(v);
    v = getenv("DISPATCH_DEBUG_MISSING_POOLS");
    if (v) _os_object_debug_missing_pools = _dispatch_parse_bool(v);
    v = getenv("LIBDISPATCH_DEBUG_MISSING_POOLS");
    if (v) _os_object_debug_missing_pools = _dispatch_parse_bool(v);
#endif
}

查看 dylddoModInitFunctions方法

void ImageLoaderMachO::doModInitFunctions(const LinkContext& context)
{
    if ( fHasInitializers ) {
    ....
                            for (size_t j=0; j < count; ++j) {
                            Initializer func = inits[j];
    ...
                                {
                                dyld3::ScopedTimer(DBG_DYLD_TIMING_STATIC_INITIALIZER, (uint64_t)fMachOData, (uint64_t)func, 0);
                                // 方法调用
                                func(context.argc, context.argv, context.envp, context.apple, &context.programVars);
                            }
...
}

此方法主要为C++方法调用,可通过断点查看验证:

func1.png

探索main函数调用

main()调用.jpeg

dyld-start方法中main函数是在上面函数调用完成后才进行调用的。

你可能感兴趣的:(应用程序加载)