关于黑马hive课程案例FineBI中文乱码的解决

文章目录

  • 问题描述
    • 情况一的解决
    • 情况二的解决
  • ETL数据清洗知识
  • 社交案例参考代码
  • 结果展示

问题描述

  • 情况1:FineBI导入表名中文乱码,字段内容正常
  • 情况2:FineBI导入表字段中文乱码,表名内容正常

情况一的解决

  1. 使用navcat等工具连接node1 mysql数据库,执行下列代码,修改相关字符集格式
  2. 执行的时机准备数据表阶段和清洗数据阶段都可,需在完成需求生成结果表之前
-- 在Hive的MySQL元数据库中执行
use hive;
-- 1.修改字段注释字符集
alter table COLUMNS_V2 modify column COMMENT varchar(256) character set utf8;
-- 2.修改表注释字符集
alter table TABLE_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;
-- 3.修改分区表参数,以支持分区键能够用中文表示
alter table PARTITION_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;
alter table PARTITION_KEYS modify column PKEY_COMMENT varchar(4000) character set utf8;
-- 4.修改索引注解
alter table INDEX_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;

情况二的解决

  • 如果出现字段中文乱码,但是通过dataGrip等工具查看表数据中文正常显示,那么就是FineBI连接hive时设置编码utf-8导致出现的问题!
  • 设置连接信息编码为自动即可
    关于黑马hive课程案例FineBI中文乱码的解决_第1张图片

ETL数据清洗知识

  • ETL:
    • E,Extract,抽取
    • T,Transform,转换
    • L,Load,加载
  • 从A抽取数据(E),进行数据转换过滤(T),将结果加载到B(L),就是ETL
  • 针对大数据中的TEL数据清洗,可以利用分布式计算框架、并行处理、数据采样、数据质量检查等方法,确保数据的质量和准确性。为了满足实时需求,还可以使用流式处理框架。重要的是根据具体的需求和数据特点选择合适的方法和技术。

社交案例参考代码

-- 创建数据库
create database db_msg;
-- 选择数据库
use db_msg;
-- 如果表已存在就删除
drop table if exists db_msg.tb_msg_source ;
-- 建表
create table db_msg.tb_msg_source(
         msg_time string comment "消息发送时间",
         sender_name string comment "发送人昵称",
         sender_account string comment "发送人账号",
         sender_sex string comment "发送人性别",
         sender_ip string comment "发送人ip地址",
         sender_os string comment "发送人操作系统",
         sender_phonetype string comment "发送人手机型号",
         sender_network string comment "发送人网络类型",
         sender_gps string comment "发送人的GPS定位",
         receiver_name string comment "接收人昵称",
         receiver_ip string comment "接收人IP",
         receiver_account string comment "接收人账号",
         receiver_os string comment "接收人操作系统",
         receiver_phonetype string comment "接收人手机型号",
         receiver_network string comment "接收人网络类型",
         receiver_gps string comment "接收人的GPS定位",
         receiver_sex string comment "接收人性别",
         msg_type string comment "消息类型",
         distance string comment "双方距离",
         message string comment "消息内容"
);

-- 上传数据到HDFS(Linux命令)
--hadoop fs -mkdir -p /chatdemo/data
--hadoop fs -put chat_data-30W.csv /chatdemo/data/

-- 加载数据到表中,基于HDFS加载
load data inpath '/chatdemo/data/chat_data-30W.csv' into table tb_msg_source;

-- 验证数据加载
select * from tb_msg_source tablesample(100 rows);
-- 验证一下表的数量
select count(*) from tb_msg_source;

--问题1:当前数据中,有一些数据的字段为空,不是合法数据
select *
from tb_msg_source
where length(sender_gps)=0;
--问题2∶需求中,需要统计每天、每个小时的消息量,但是数据中没有天和小时字段,只有整体时间字段,不好处理
select msg_time from tb_msg_source limit 10;
--问题3:需求中,需要对经度和维度构建地区的可视化地图,但是数据中GPS经纬度为一个字段,不好处理
select sender_gps from tb_msg_source limit 10;

--需求
--需求1:对字段为空的不合法数据进行过滤 where
--需求2:通过时间字段构建天和小时字段 date hour
--需求3:从GPS的经纬度中提取经度和纬度 split()
--需求4:将ETL以后的结果保存在一张新的Hive表中

drop table if exists db_msg.tb_msg_etl;
--ETL清洗转换(Extract 抽取, Transform 转换,Load 加载)
create table db_msg.tb_msg_etl(
          msg_time string comment "消息发送时间",
          sender_name string comment "发送人昵称",
          sender_account string comment "发送人账号",
          sender_sex string comment "发送人性别",
          sender_ip string comment "发送人ip地址",
          sender_os string comment "发送人操作系统",
          sender_phonetype string comment "发送人手机型号",
          sender_network string comment "发送人网络类型",
          sender_gps string comment "发送人的GPS定位",
          receiver_name string comment "接收人昵称",
          receiver_ip string comment "接收人IP",
          receiver_account string comment "接收人账号",
          receiver_os string comment "接收人操作系统",
          receiver_phonetype string comment "接收人手机型号",
          receiver_network string comment "接收人网络类型",
          receiver_gps string comment "接收人的GPS定位",
          receiver_sex string comment "接收人性别",
          msg_type string comment "消息类型",
          distance string comment "双方距离",
          message string comment "消息内容",
          msg_day string comment "消息日",
          msg_hour string comment "消息小时",
          sender_lng double comment "经度",
          sender_lat double comment "纬度"
);

INSERT OVERWRITE TABLE db_msg.tb_msg_etl
SELECT
    *,
    DATE(msg_time) AS msg_day,
    HOUR(msg_time) AS msg_hour,
    SPLIT(sender_gps, ',')[0] AS sender_lng,
    SPLIT(sender_gps, ',')[1] AS sender_lat
FROM db_msg.tb_msg_source
WHERE LENGTH(sender_gps) > 0;

--需求
-- 1.统计今日总消息量
create table if not exists tb_rs_total_msg_cnt
    comment '每日消总量' AS
select msg_day,count(*) AS total_msg_cnt
from tb_msg_etl group by msg_day;

-- 2.统计今日每小时消息量、发送和接收用户数
create table if not exists tb_rs_hours_msg_cnt
comment "每小时消息量趋势" AS
    select
        msg_hour,
        count(*) as total_msg_cnt,
        count(DISTINCT sender_account) as sender_usr_cnt,
        count(DISTINCT receiver_account) as receiver_usr_cnt
    from tb_msg_etl group by msg_hour;

-- 3.统计今日各地区发送消息数据量
create table if not exists tb_rs_loc_cnt
comment "今日各地区发送消息总量" AS
    select
        msg_day,
        sender_lng,
        sender_lat,
        count(*) as total_msg_cnt
    from tb_msg_etl
    group by msg_day,sender_lng,sender_lat;
-- 4.统计今日发送消息和接收消息的用户数
create table if not exists tb_rs_usr_cnt
comment "今日发送消息和接收消息的用户数" AS
select
    msg_day,
    count(distinct sender_account) as sender_user_cnt,
    count(distinct receiver_account) as receiver_user_cnt
from tb_msg_etl
group by msg_day;
-- 5.统计今日发送消息最多的Top10用户
create table if not exists tb_rs_user_sender_msg_top10
    comment "今日发送消息最多的Top10用户" AS
select
    sender_name,
    count(*) as sender_msg_cnt
from tb_msg_etl
group by sender_name
order by sender_msg_cnt desc
limit 10;
-- 6.统计今日接收消息最多的Top10用户
create table if not exists tb_rs_user_receiver_msg_top10
    comment "今日接收消息最多的Top10用户" AS
select
    receiver_name,
    count(*) as receiver_msg_cnt
from tb_msg_etl
group by receiver_name
order by receiver_msg_cnt desc
limit 10;
-- 7.统计发送人的手机型号分布情况
create table if not exists tb_rs_sender_phone_type
comment '发送人手机型号' as
select
    sender_phonetype,
    count(*) as cnt
from tb_msg_etl
group by sender_phonetype;
-- 8.统计发送人的设备操作系统分布情况
create table if not exists tb_rs_sender_phone_os
    comment '发送人手机操作系统' as
select
    sender_os,
    count(*) as cnt
from tb_msg_etl
group by sender_os;

结果展示


你可能感兴趣的:(大数据修炼之旅,hive,hadoop,python)