使用Fashion-MNIST数据集.
在定义模型的时候要注意数据的格式.
对于softmax,可以在损失函数的时候一起去搞,网络中依然只需要线性就好了.
下面两种写法的另一个文件为:d2lzh_pytorch.py
import random
from IPython import display
import matplotlib.pyplot as plt
import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import time
import sys
import torch.nn as nn
def use_svg_display():
# 用矢量图显示
display.set_matplotlib_formats('svg')
def set_figsize(figsize=(3.5, 2.5)):
use_svg_display()
# 设置图的尺寸
plt.rcParams['figure.figsize'] = figsize
'''给定batch_size, feature, labels,做数据的打乱并生成指定大小的数据集'''
def data_iter(batch_size, features, labels):
num_examples = len(features)
indices = list(range(num_examples))
random.shuffle(indices)
for i in range(0, num_examples, batch_size): #(start, staop, step)
j = torch.LongTensor(indices[i: min(i + batch_size, num_examples)]) #最后一次可能没有一个batch
yield features.index_select(0, j), labels.index_select(0, j)
'''定义线性回归的模型'''
def linreg(X, w, b):
return torch.mm(X, w) + b
'''定义线性回归的损失函数'''
def squared_loss(y_hat, y):
return (y_hat - y.view(y_hat.size())) ** 2 / 2
'''线性回归的优化算法 —— 小批量随机梯度下降法'''
def sgd(params, lr, batch_size):
for param in params:
param.data -= lr * param.grad / batch_size #这里使用的是param.data
'''MINIST,可以将数值标签转成相应的文本标签'''
def get_fashion_mnist_labels(labels):
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
return [text_labels[int(i)] for i in labels]
'''定义一个可以在一行里画出多张图像和对应标签的函数'''
def show_fashion_mnist(images, labels):
use_svg_display()
# 这里的_表示我们忽略(不使用)的变量
_, figs = plt.subplots(1, len(images), figsize=(12, 12))
for f, img, lbl in zip(figs, images, labels):
f.imshow(img.view((28, 28)).numpy())
f.set_title(lbl)
f.axes.get_xaxis().set_visible(False)
f.axes.get_yaxis().set_visible(False)
plt.show()
'''获取并读取Fashion-MNIST数据集;该函数将返回train_iter和test_iter两个变量'''
def load_data_fashion_mnist(batch_size):
mnist_train = torchvision.datasets.FashionMNIST(root='Datasets/FashionMNIST', train=True, download=True,
transform=transforms.ToTensor())
mnist_test = torchvision.datasets.FashionMNIST(root='Datasets/FashionMNIST', train=False, download=True,
transform=transforms.ToTensor())
if sys.platform.startswith('win'):
num_workers = 0 # 0表示不用额外的进程来加速读取数据
else:
num_workers = 4
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)
return train_iter, test_iter
'''评估模型net在数据集data_iter的准确率'''
def evaluate_accuracy(data_iter, net):
acc_sum, n = 0.0, 0
for X, y in data_iter:
acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
n += y.shape[0]
return acc_sum / n
'''训练模型,softmax'''
def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, params=None, lr=None, optimizer=None):
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y).sum()
# 梯度清零
if optimizer is not None:
optimizer.zero_grad()
elif params is not None and params[0].grad is not None:
for param in params:
param.grad.data.zero_()
l.backward()
if optimizer is None:
sgd(params, lr, batch_size)
else:
optimizer.step()
train_l_sum += l.item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
n += y.shape[0]
test_acc = evaluate_accuracy(test_iter, net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
% (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))
'''对x的形状转换'''
class FlattenLayer(nn.Module):
def __init__(self):
super(FlattenLayer, self).__init__()
def forward(self, x):
return x.view(x.shape[0], -1)
- 网络有三层,第一层专门用来处理数据格式
import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
sys.path.append("..")
import d2lzh_pytorch as d2l
#读取数据
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
# 定义模型与初始化模型参数
num_inputs = 784
num_outputs = 10
'''第一种定义方式'''
class LinearNet(nn.Module):
def __init__(self, num_inputs, num_outputs):
super(LinearNet, self).__init__()
self.linear = nn.Linear(num_inputs, num_outputs)
def forward(self, x): # x shape: (batch, 1, 28, 28)
y = self.linear(x.view(x.shape[0], -1))
return y
'''第二种定义方式'''
from collections import OrderedDict
net = nn.Sequential(
# FlattenLyaer
# nn.Linear(num_inputs, num_outputs)
OrderedDict([
('flatten', d2l.FlattenLayer()),
('linear', nn.Linear(num_inputs, num_outputs))
])
)
init.normal_(net.linear.weight, mean = 0, std = 0.01)
init.constant_(net.linear.bias, val = 0)
# softmax与交叉熵损失函数
loss = nn.CrossEntropyLoss()
# 定义优化算法
optimizer = torch.optim.SGD(net.parameters(), lr = 0.1)
# 训练模型
num_epochs = 5
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)
- 将数据处理直接放到了自己定义的网络中,网络只有2两层
import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
sys.path.append("..")
import d2lzh_pytorch as d2l
#读取数据
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
# 定义模型与初始化模型参数
num_inputs = 784
num_outputs = 10
'''第一种定义方式'''
class LinearNet(nn.Module):
def __init__(self, num_inputs, num_outputs):
super(LinearNet, self).__init__()
self.linear = nn.Linear(num_inputs, num_outputs)
def forward(self, x): # x shape: (batch, 1, 28, 28)
y = self.linear(x.view(x.shape[0], -1))
return y
'''第二种定义方式'''
from collections import OrderedDict
net = nn.Sequential(
# FlattenLyaer
# nn.Linear(num_inputs, num_outputs)
OrderedDict([
('flatten', d2l.FlattenLayer()),
('linear', nn.Linear(num_inputs, num_outputs))
])
)
net = LinearNet(num_inputs, num_outputs)
init.normal_(net.linear.weight, mean = 0, std = 0.01)
init.constant_(net.linear.bias, val = 0)
# softmax与交叉熵损失函数
loss = nn.CrossEntropyLoss()
# 定义优化算法
optimizer = torch.optim.SGD(net.parameters(), lr = 0.1)
# 训练模型
num_epochs = 5
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)