import cv2
import numpy as np
from os import listdir, path
class Seal:
def __init__(self, img_path):
"""
初始化图片
:param img_path: 原始图片路径 """
self.image = cv2.imread(img_path)
self.img_shape = self.image.shape
self.file_name = img_path.split('.')[0].split('\\')[-1]
def unify_img_size(self):
"""
统一图片的大小
:return:返回一张未处理的目标图片 """
# img_w = 650 if self.img_shape[1] > 600 else 400
img_w = self.img_shape[1]
self.image = cv2.resize(self.image, (img_w, int(
img_w * self.img_shape[0] / self.img_shape[1])), interpolation=cv2.IMREAD_COLOR)
impng = cv2.cvtColor(self.image.copy(), cv2.COLOR_RGB2RGBA)
return impng
def img_binaryzation(self, hue_image, low_range, high_range, imgpng):
th = cv2.inRange(hue_image, low_range, high_range)
element = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 1))
th = cv2.dilate(th, element)
index1 = th == 255
print_img = np.zeros(imgpng.shape, np.uint8)
print_img[:, :, :] = (255, 255, 255, 0) # 这里
print_img[index1] = imgpng[index1] # (0,0,255)
return print_img
def img_enhance(self):
imgpng = self.unify_img_size()
hue_image = cv2.cvtColor(self.image, cv2.COLOR_BGR2HSV) # 处理图像色调
low_range = np.array([130, 43, 46]) # 设下边界
high_range = np.array([180, 255, 255]) # 设上边界
print1 = self.img_binaryzation(
hue_image, low_range, high_range, imgpng)
low_range = np.array([0, 43, 46])
high_range = np.array([9, 255, 255])
print2 = self.img_binaryzation(
hue_image, low_range, high_range, imgpng)
imgreal = cv2.add(print2, print1)
white_px = np.asarray([255, 255, 255, 255])
(row, col, _) = imgreal.shape
for r in range(row):
for c in range(col):
px = imgreal[r][c]
if all(px == white_px):
imgreal[r][c] = imgpng[r][c]
return imgreal
def extension_img(self):
"""
边缘检测,截取并输出结果
:return:
"""
imgreal = self.img_enhance()
# 扩充图片防止截取部分
print4 = cv2.copyMakeBorder(
imgreal, 50, 50, 50, 50, cv2.BORDER_CONSTANT, value=[255, 255, 255, 0]) # 这里
print2gray = cv2.cvtColor(print4, cv2.COLOR_RGBA2GRAY)
_, grayfirst = cv2.threshold(
print2gray, 254, 255, cv2.THRESH_BINARY_INV)
element = cv2.getStructuringElement(cv2.MORPH_RECT, (22, 22))
img6 = cv2.dilate(grayfirst, element)
c_canny_img = cv2.Canny(img6, 10, 10)
contours, hierarchy = cv2.findContours(
c_canny_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
areas = []
for i, cnt in enumerate(contours):
x, y, w, h = cv2.boundingRect(cnt)
area = w * h
ars = [area, i]
areas.append(ars)
areas = sorted(areas, reverse=True)
maxares = areas[:1]
print(areas, 'areas')
print("maxares length:", len(maxares))
print("maxares[0] length:", len(maxares[0]))
x, y, w, h = cv2.boundingRect(contours[maxares[0][1]])
print5 = print4[y:(y + h), x:(x + w)]
# 高小于宽
if print5.shape[0] < print5.shape[1]:
zh = int((print5.shape[1] - print5.shape[0]) / 2)
print5 = cv2.copyMakeBorder(
print5, zh, zh, 0, 0, cv2.BORDER_CONSTANT, value=[255, 255, 255, 0])
else:
zh = int((print5.shape[0] - print5.shape[1]) / 2)
print5 = cv2.copyMakeBorder(
print5, 0, 0, zh, zh, cv2.BORDER_CONSTANT, value=[255, 255, 255, 0])
resultprint = cv2.resize(print5, (150, 150))
cv2.imwrite(r'处理结果.png', resultprint)
if __name__ == '__main__':
# print(listdir())
path = input('请输入当前文件中需要处理的红色印章图片,如:1.png\n')
s = Seal(path)
s.extension_img()
print('处理完成!!')