TaskManager 启动流程

转载于:http://matt33.com/2020/03/15/flink-taskmanager-7/

TaskManager 启动流程

与 JobManager 类似,TaskManager 的启动类是 TaskManagerRunner,大概的流程如下图所示:

TaskManager 启动流程
TaskManager 启动流程

TaskManager 启动的入口方法是 runTaskManager(),它会首先初始化 TaskManager 一些相关的服务,比如:初始化 RpcService、初始化 HighAvailabilityServices 等等,这些都是为 TaskManager 服务的启动做相应的准备工作。其实 TaskManager 初始化主要分为下面两大块:

  1. TaskManager 相关 service 的初始化:比如:内存管理器、IO 管理器、TaskSlotTable(TaskSlot 的管理是在这里进行的)等,这里也包括 TaskExecutor 的初始化,注意这里对于一些需要启动的服务在这一步并没有启动;
  2. TaskExecutor 的启动:它会启动 TM 上相关的服务,Task 的提交和运行也是在 TaskExecutor 中处理的,上一步 TM 初始化的那些服务也是在 TaskExecutor 中使用的。

TM 的服务真正 Run 起来之后,核心流程还是在 TaskExecutor 中。

TaskManager 相关服务的初始化

这里,先从 TaskManager 的入口 runTaskManager() 来看 TaskManager 相关服务的初始化流程,总结来看流程如下:

//  1. 入口方法
runTaskManager()

// 2. 创建 TaskManagerRunner 对象
TaskManagerRunner taskManagerRunner = new TaskManagerRunner(configuration, resourceId);

// 3. 启动 TaskManager 服务
startTaskManager()

// 4. 初始化相关的服务
TaskManagerServices.fromConfiguration()

首先看下具体的代码实现:

// TaskManagerRunner.java
//note: 启动 TaskManagerRunner
public static void runTaskManager(Configuration configuration, ResourceID resourceId) throws Exception {
    final TaskManagerRunner taskManagerRunner = new TaskManagerRunner(configuration, resourceId);

    taskManagerRunner.start();
}


//note: 初始化 TaskManagerRunner
public TaskManagerRunner(Configuration configuration, ResourceID resourceId) throws Exception {
    this.configuration = checkNotNull(configuration);
    this.resourceId = checkNotNull(resourceId);

    //note: akka 超时设置
    timeout = AkkaUtils.getTimeoutAsTime(configuration);

    this.executor = java.util.concurrent.Executors.newScheduledThreadPool(
        Hardware.getNumberCPUCores(),
        new ExecutorThreadFactory("taskmanager-future"));

    //note: HA 的配置及服务初始化
    highAvailabilityServices = HighAvailabilityServicesUtils.createHighAvailabilityServices(
        configuration,
        executor,
        HighAvailabilityServicesUtils.AddressResolution.TRY_ADDRESS_RESOLUTION);

    //note: create rpc service
    rpcService = createRpcService(configuration, highAvailabilityServices);

    //note: 初始化心跳服务
    HeartbeatServices heartbeatServices = HeartbeatServices.fromConfiguration(configuration);

    //note: metrics 服务
    metricRegistry = new MetricRegistryImpl(
        MetricRegistryConfiguration.fromConfiguration(configuration),
        ReporterSetup.fromConfiguration(configuration));

    //note: 启动相应的 metrics 服务
    final RpcService metricQueryServiceRpcService = MetricUtils.startMetricsRpcService(configuration, rpcService.getAddress());
    metricRegistry.startQueryService(metricQueryServiceRpcService, resourceId);
//note: 初始化 blob 服务
    blobCacheService = new BlobCacheService(
        configuration, highAvailabilityServices.createBlobStore(), null
    );

    //note: 启动 TaskManager 服务及创建 TaskExecutor 对象
    taskManager = startTaskManager(
        this.configuration,
        this.resourceId,
        rpcService,
        highAvailabilityServices,
        heartbeatServices,
        metricRegistry,
        blobCacheService,
        false,
        this);

    this.terminationFuture = new CompletableFuture<>();
    this.shutdown = false;

    //note: 周期性地输出内存相关的日志信息,直到 terminationFuture complete
    MemoryLogger.startIfConfigured(LOG, configuration, terminationFuture);
}

在上面的流程中,初始化了一些最基本的服务,比如:rpc 服务,在方法的最后调用了 startTaskManager() 启动 TaskManager,其代码实现如下:

// TaskManagerRunner.java
//note: 创建并初始化 TaskExecutor 对象
public static TaskExecutor startTaskManager(
        Configuration configuration,
        ResourceID resourceID,
        RpcService rpcService,
        HighAvailabilityServices highAvailabilityServices,
        HeartbeatServices heartbeatServices,
        MetricRegistry metricRegistry,
        BlobCacheService blobCacheService,
        boolean localCommunicationOnly,
        FatalErrorHandler fatalErrorHandler) throws Exception {

    checkNotNull(configuration);
    checkNotNull(resourceID);
    checkNotNull(rpcService);
    checkNotNull(highAvailabilityServices);

    LOG.info("Starting TaskManager with ResourceID: {}", resourceID);

    InetAddress remoteAddress = InetAddress.getByName(rpcService.getAddress());

    //note: TM 服务相关的配置都维护在这个对象中,这里会把使用的相关参数解析并维护起来
    TaskManagerServicesConfiguration taskManagerServicesConfiguration =
        TaskManagerServicesConfiguration.fromConfiguration(
            configuration,
            resourceID,
            remoteAddress,
            EnvironmentInformation.getSizeOfFreeHeapMemoryWithDefrag(),
            EnvironmentInformation.getMaxJvmHeapMemory(),
            localCommunicationOnly);

    //note: 初始化 TM 的 TaskManagerMetricGroup,并相应地初始化 TM 的基本状态(内存、CPU 等)监控
    Tuple2 taskManagerMetricGroup = MetricUtils.instantiateTaskManagerMetricGroup(
        metricRegistry,
        TaskManagerLocation.getHostName(remoteAddress),
        resourceID,
        taskManagerServicesConfiguration.getSystemResourceMetricsProbingInterval());

    //note: 初始化 TaskManagerServices(TM 相关服务的初始化都在这里)
    TaskManagerServices taskManagerServices = TaskManagerServices.fromConfiguration(
        taskManagerServicesConfiguration,
        taskManagerMetricGroup.f1,
        rpcService.getExecutor()); // TODO replace this later with some dedicated executor for io.

    //note: TaskManager 相关的配置,主要用于 TaskExecutor 的初始化
    TaskManagerConfiguration taskManagerConfiguration = TaskManagerConfiguration.fromConfiguration(configuration);

    String metricQueryServiceAddress = metricRegistry.getMetricQueryServiceGatewayRpcAddress();

    //note: 最后创建 TaskExecutor 对象
    return new TaskExecutor(
        rpcService,
        taskManagerConfiguration,
        highAvailabilityServices,
        taskManagerServices,
        heartbeatServices,
        taskManagerMetricGroup.f0,
        metricQueryServiceAddress,
        blobCacheService,
        fatalErrorHandler,
        new PartitionTable<>());
}

这里,来着重看一下 TaskManagerServices.fromConfiguration() 这个方法,在这个方法初始了很多 TM 的服务,从下面的具体实现中也可以看出:

// TaskManagerServices.java
/**
 * Creates and returns the task manager services.
 * note:根据创建 TM 服务
 *
 * @param taskManagerServicesConfiguration task manager configuration
 * @param taskManagerMetricGroup metric group of the task manager
 * @param taskIOExecutor executor for async IO operations
 * @return task manager components
 * @throws Exception
 */
public static TaskManagerServices fromConfiguration(
        TaskManagerServicesConfiguration taskManagerServicesConfiguration,
        MetricGroup taskManagerMetricGroup,
        Executor taskIOExecutor) throws Exception {

    // pre-start checks
    checkTempDirs(taskManagerServicesConfiguration.getTmpDirPaths());

    //note: 创建 taskEventDispatcher
    final TaskEventDispatcher taskEventDispatcher = new TaskEventDispatcher();

    // start the I/O manager, it will create some temp directories.
    //note: 创建 IO 管理器
    final IOManager ioManager = new IOManagerAsync(taskManagerServicesConfiguration.getTmpDirPaths());

    //note: 创建 ShuffleEnvironment 对象(默认是 NettyShuffleEnvironment)
    final ShuffleEnvironment shuffleEnvironment = createShuffleEnvironment(
        taskManagerServicesConfiguration,
        taskEventDispatcher,
        taskManagerMetricGroup);
    final int dataPort = shuffleEnvironment.start();

    //note: 创建 KvStateService 实例并启动
    final KvStateService kvStateService = KvStateService.fromConfiguration(taskManagerServicesConfiguration);
    kvStateService.start();

    //note: 初始化 taskManagerLocation,记录 connection 信息
    final TaskManagerLocation taskManagerLocation = new TaskManagerLocation(
        taskManagerServicesConfiguration.getResourceID(),
        taskManagerServicesConfiguration.getTaskManagerAddress(),
        dataPort);

    // this call has to happen strictly after the network stack has been initialized
    //note: 初始化 MemoryManager
    final MemoryManager memoryManager = createMemoryManager(taskManagerServicesConfiguration);
    final long managedMemorySize = memoryManager.getMemorySize();

    //note: 初始化 BroadcastVariableManager 对象
    final BroadcastVariableManager broadcastVariableManager = new BroadcastVariableManager();

    //note: 当前 TM 拥有的 slot 及每个 slot 的资源信息
    final int numOfSlots = taskManagerServicesConfiguration.getNumberOfSlots();
    final List resourceProfiles =
        Collections.nCopies(numOfSlots, computeSlotResourceProfile(numOfSlots, managedMemorySize));

    //note: 注册一个超时(AKKA 超时设置)服务(在 TaskSlotTable 用于监控 slot 分配是否超时)
    final TimerService timerService = new TimerService<>(
        new ScheduledThreadPoolExecutor(1),
        taskManagerServicesConfiguration.getTimerServiceShutdownTimeout());

    //note: 这里会维护 slot 相关列表
    final TaskSlotTable taskSlotTable = new TaskSlotTable(resourceProfiles, timerService);

    //note: 维护 jobId 与 JobManager connection 之间的关系
    final JobManagerTable jobManagerTable = new JobManagerTable();

    //note: 监控注册的 job 的 JobManger leader 信息
    final JobLeaderService jobLeaderService = new JobLeaderService(taskManagerLocation, taskManagerServicesConfiguration.getRetryingRegistrationConfiguration());

    final String[] stateRootDirectoryStrings = taskManagerServicesConfiguration.getLocalRecoveryStateRootDirectories();

    final File[] stateRootDirectoryFiles = new File[stateRootDirectoryStrings.length];

    for (int i = 0; i < stateRootDirectoryStrings.length; ++i) {
        stateRootDirectoryFiles[i] = new File(stateRootDirectoryStrings[i], LOCAL_STATE_SUB_DIRECTORY_ROOT);
    }

    //note: 创建 TaskExecutorLocalStateStoresManager 对象:维护状态信息
    final TaskExecutorLocalStateStoresManager taskStateManager = new TaskExecutorLocalStateStoresManager(
        taskManagerServicesConfiguration.isLocalRecoveryEnabled(),
        stateRootDirectoryFiles,
        taskIOExecutor);

    //note: 将上面初始化的这些服务,封装到一个 TaskManagerServices 对象中
    return new TaskManagerServices(
        taskManagerLocation,
        memoryManager,
        ioManager,
        shuffleEnvironment,
        kvStateService,
        broadcastVariableManager,
        taskSlotTable,
        jobManagerTable,
        jobLeaderService,
        taskStateManager,
        taskEventDispatcher);
}

看到这里,是否有点懵圈了,是不是感觉 TaskManager 实现还挺复杂的,但与 TaskManager 要做的功能相比,上面的实现还不够,真正在 TaskManager 中处理复杂繁琐工作的组件是 TaskExecutor,这个才是 TaskManager 的核心。

TaskExecutor 的启动

回顾一下文章最开始的流程图,TaskManagerRunner 调用 run() 方法之后,真正要启动的是 TaskExecutor 服务,其 onStart() 具体实现如下:

//note: 启动服务
@Override
public void onStart() throws Exception {
    try {
        //note: 启动 TM 的相关服务
        startTaskExecutorServices();
    } catch (Exception e) {
        final TaskManagerException exception = new TaskManagerException(String.format("Could not start the TaskExecutor %s", getAddress()), e);
        onFatalError(exception);
        throw exception;
    }

    //note: 注册超时检测,如果超时还未注册完成,就抛出错误,启动失败
    startRegistrationTimeout();
}

这里,主要分为两个部分:

startTaskExecutorServices(): 启动 TaskManager 相关的服务,结合流程图主要是四大块:
启动心跳服务;
向 Flink Master 的 ResourceManager 注册 TaskManager;
启动 TaskSlotTable 服务(TaskSlot 的维护主要在这个服务中);
启动 JobLeaderService 服务,它主要是监控各个作业 JobManager leader 的变化;
startRegistrationTimeout(): 启动注册超时的检测,默认是5 min,如果超过这个时间还没注册完成,就会抛出异常退出进程,启动失败。
TaskExecutor 启动的核心实现是在 startTaskExecutorServices() 中,其实现如下:

private void startTaskExecutorServices() throws Exception {
    try {
        //note: 启动心跳服务
        startHeartbeatServices();

        //note: 与集群的 ResourceManager 建立连接(并创建一个 listener)
        // start by connecting to the ResourceManager
        resourceManagerLeaderRetriever.start(new ResourceManagerLeaderListener());

        // tell the task slot table who's responsible for the task slot actions
        //note: taskSlotTable 启动
        taskSlotTable.start(new SlotActionsImpl());

        // start the job leader service
        //note: 启动 job leader 服务
        jobLeaderService.start(getAddress(), getRpcService(), haServices, new JobLeaderListenerImpl());

        fileCache = new FileCache(taskManagerConfiguration.getTmpDirectories(), blobCacheService.getPermanentBlobService());
    } catch (Exception e) {
        handleStartTaskExecutorServicesException(e);
    }
}

接下来,详细这块的实现。

1 启动心跳服务

TaskExecutor 启动的第一个服务就是 HeartbeatManager,这里会启动两个:

  1. jobManagerHeartbeatManager: 用于与 JobManager(如果 Job 有 task 在这个 TM 上,这个 Job 的 JobManager 就与 TaskManager 有心跳通信)之间的心跳通信管理,如果 timeout,这里会重连;
  2. resourceManagerHeartbeatManager:用于与 ResourceManager 之间的通信管理,如果 timeout,这里也会重连。
// TaskExecutor.java
//note: 启动心跳服务
private void startHeartbeatServices() {
    final ResourceID resourceId = taskExecutorServices.getTaskManagerLocation().getResourceID();
    //note: 创建一个与 JM 通信的心跳管理器
    jobManagerHeartbeatManager = heartbeatServices.createHeartbeatManager(
        resourceId,
        new JobManagerHeartbeatListener(),
        getMainThreadExecutor(),
        log);

    //note: 创建一个与 RM 通信的心跳管理器
    resourceManagerHeartbeatManager = heartbeatServices.createHeartbeatManager(
        resourceId,
        new ResourceManagerHeartbeatListener(),
        getMainThreadExecutor(),
        log);
}

2. 向 RM 注册 TM

TaskManger 向 ResourceManager 注册是通过 ResourceManagerLeaderListener 来完成的,它会监控 ResourceManager 的 leader 变化,如果有新的 leader 被选举出来,将会调用 notifyLeaderAddress() 方法去触发与 ResourceManager 的重连,其实现如下:

// TaskExecutor.java
/**
 * The listener for leader changes of the resource manager.
 * note:监控 ResourceManager leader 变化的 listener
 */
private final class ResourceManagerLeaderListener implements LeaderRetrievalListener {

    //note: 如果 leader 被选举处理(包括挂掉之后重新选举),将会调用这个方法通知 TM
    @Override
    public void notifyLeaderAddress(final String leaderAddress, final UUID leaderSessionID) {
        runAsync(
            () -> notifyOfNewResourceManagerLeader(
                leaderAddress,
                ResourceManagerId.fromUuidOrNull(leaderSessionID)));
    }

    @Override
    public void handleError(Exception exception) {
        onFatalError(exception);
    }
}


//note: 如果 RM 的 new leader 选举出来了,这里会新创建一个 ResourceManagerAddress 对象,并重新建立连接
private void notifyOfNewResourceManagerLeader(String newLeaderAddress, ResourceManagerId newResourceManagerId) {
    resourceManagerAddress = createResourceManagerAddress(newLeaderAddress, newResourceManagerId);
    reconnectToResourceManager(new FlinkException(String.format("ResourceManager leader changed to new address %s", resourceManagerAddress)));
}



//note: 重新与 ResourceManager 连接(可能是 RM leader 切换)
private void reconnectToResourceManager(Exception cause) {
    closeResourceManagerConnection(cause);
    //note: 注册超时检测,如果 timeout 还没注册成功,这里就会 failed
    startRegistrationTimeout();
    //note: 与 RM 重新建立连接
    tryConnectToResourceManager();
}


//note: 建立与 ResourceManager 的连接
private void tryConnectToResourceManager() {
    if (resourceManagerAddress != null) {
        connectToResourceManager();
    }
}


//note: 与 ResourceManager 建立连接
private void connectToResourceManager() {
    assert(resourceManagerAddress != null);
    assert(establishedResourceManagerConnection == null);
    assert(resourceManagerConnection == null);

    log.info("Connecting to ResourceManager {}.", resourceManagerAddress);

    //note: 与 RM 建立连接
    resourceManagerConnection =
        new TaskExecutorToResourceManagerConnection(
            log,
            getRpcService(),
            getAddress(),
            getResourceID(),
            taskManagerConfiguration.getRetryingRegistrationConfiguration(),
            taskManagerLocation.dataPort(),
            hardwareDescription,
            resourceManagerAddress.getAddress(),
            resourceManagerAddress.getResourceManagerId(),
            getMainThreadExecutor(),
            new ResourceManagerRegistrationListener());
    resourceManagerConnection.start();
}

在上面的最后一步,创建了 TaskExecutorToResourceManagerConnection 对象,它启动后,会向 ResourceManager 注册 TM,具体的方法实现如下:

// TaskExecutorToResourceManagerConnection.java
@Override
protected CompletableFuture invokeRegistration(
        ResourceManagerGateway resourceManager, ResourceManagerId fencingToken, long timeoutMillis) throws Exception {

    Time timeout = Time.milliseconds(timeoutMillis);
    return resourceManager.registerTaskExecutor(
        taskExecutorAddress,
        resourceID,
        dataPort,
        hardwareDescription,
        timeout);
}

ResourceManager 在收到这个请求,会做相应的处理,主要要做的事情就是:先从缓存里移除旧的 TM 注册信息(如果之前存在的话),然后再更新缓存,并增加心跳监控,只有这些工作完成之后,TM 的注册才会被认为是成功的。

3. 启动 TaskSlotTable 服务

TaskSlotTable 从名字也可以看出,它主要是为 TaskSlot 服务的,它主要的功能有以下三点:

  1. 维护这个 TM 上所有 TaskSlot 与 Task、及 Job 的关系;
  2. 维护这个 TM 上所有 TaskSlot 的状态;
  3. TaskSlot 在进行 allocate/free 操作,通过 TimeService 做超时检测。

先看下 TaskSlotTable 是如何初始化的:

// TaskManagerServices.java
//note: 当前 TM 拥有的 slot 及每个 slot 的资源信息
//note: TM 的 slot 数由 taskmanager.numberOfTaskSlots 决定,默认是 1
final int numOfSlots = taskManagerServicesConfiguration.getNumberOfSlots();
final List resourceProfiles =
    Collections.nCopies(numOfSlots, computeSlotResourceProfile(numOfSlots, managedMemorySize));

//note: 注册一个超时(AKKA 超时设置)服务(在 TaskSlotTable 用于监控 slot 分配是否超时)
//note: 超时参数由 akka.ask.timeout 控制,默认是 10s
final TimerService timerService = new TimerService<>(
    new ScheduledThreadPoolExecutor(1),
    taskManagerServicesConfiguration.getTimerServiceShutdownTimeout());

//note: 这里会维护 slot 相关列表
final TaskSlotTable taskSlotTable = new TaskSlotTable(resourceProfiles, timerService);

TaskSlotTable 的初始化,只需要两个变量:

resourceProfiles: TM 上每个 Slot 的资源信息;
timerService: 超时检测服务,来保证操作超时时做相应的处理。
TaskSlotTable 的启动流程如下:

// TaskExecutor.java

// tell the task slot table who's responsible for the task slot actions
//note: taskSlotTable 启动
taskSlotTable.start(new SlotActionsImpl());

//note: SlotActions 相关方法的实现
private class SlotActionsImpl implements SlotActions {

    //note: 释放 slot 资源
    @Override
    public void freeSlot(final AllocationID allocationId) {
        runAsync(() ->
            freeSlotInternal(
                allocationId,
                new FlinkException("TaskSlotTable requested freeing the TaskSlot " + allocationId + '.')));
    }

    //note: 如果 slot 相关的操作(分配/释放)失败,这里将会调用这个方法
    //note: 监控的手段是:操作前先注册一个 timeout 监控,操作完成后再取消这个监控,如果在这个期间 timeout 了,就会调用这个方法
    //note: TimeService 的 key 是 AllocationID
    @Override
    public void timeoutSlot(final AllocationID allocationId, final UUID ticket) {
        runAsync(() -> TaskExecutor.this.timeoutSlot(allocationId, ticket));
    }
}

4. 启动 JobLeaderService 服务

TaskExecutor 启动的最后一步是,启动 JobLeader 服务,这个服务通过 JobLeaderListenerImpl 监控 Job 的 JobManager leader 的变化,如果 leader 被选举出来之后,这里将会与新的 JobManager leader 建立通信连接。

// TaskExecutor.java

// start the job leader service
//note: 启动 job leader 服务
jobLeaderService.start(getAddress(), getRpcService(), haServices, new JobLeaderListenerImpl());

//note: JobLeaderListener 的实现
private final class JobLeaderListenerImpl implements JobLeaderListener {

    @Override
    public void jobManagerGainedLeadership(
        final JobID jobId,
        final JobMasterGateway jobManagerGateway,
        final JMTMRegistrationSuccess registrationMessage) {
        //note: 建立与 JobManager 的连接
        runAsync(
            () ->
                establishJobManagerConnection(
                    jobId,
                    jobManagerGateway,
                    registrationMessage));
    }

    @Override
    public void jobManagerLostLeadership(final JobID jobId, final JobMasterId jobMasterId) {
        log.info("JobManager for job {} with leader id {} lost leadership.", jobId, jobMasterId);

        runAsync(() ->
            closeJobManagerConnection(
                jobId,
                new Exception("Job leader for job id " + jobId + " lost leadership.")));
    }

    @Override
    public void handleError(Throwable throwable) {
        onFatalError(throwable);
    }
}

到这里,TaskManager 的启动流程就梳理完了,TaskManager 在实现上整体的复杂度还是比较高的,毕竟它要做的事情是非常多的,下面的几个问题,将会进一步分析 TaskManager 内部的实现机制。

TaskManager 提供了哪些能力/功能?

要想知道 TaskManager 提供了哪些能力,个人认为有一个最简单有效的方法就是查看其对外提供的 API 接口,它向上层暴露哪些 API,这些 API 背后都是 TaskManager 能力的体现,TaskManager 对外的包括的 API 列表如下:

  1. requestSlot(): RM 向 TM 请求一个 slot 资源;
  2. requestStackTraceSample(): 请求某个 task 在执行过程中的一个 stack trace 抽样;
  3. submitTask(): JobManager 向 TM 提交 task;
  4. updatePartitions(): 更新这个 task 对应的 Partition 信息;
  5. releasePartitions(): 释放这个 job 的所有中间结果,比如 close 的时候触发;
  6. triggerCheckpoint(): Checkpoint Coordinator 触发 task 的 checkpoint;
  7. confirmCheckpoint(): Checkpoint Coordinator 通知 task 这个 checkpoint 完成;
  8. cancelTask(): task 取消;
  9. heartbeatFromJobManager(): 接收来自 JobManager 的心跳请求;
  10. heartbeatFromResourceManager(): 接收来自 ResourceManager 的心跳请求;
  11. disconnectJobManager()
  12. disconnectResourceManager()
  13. freeSlot(): JobManager 释放 Slot;
  14. requestFileUpload(): 一些文件(log 等)的上传请求;
  15. requestMetricQueryServiceAddress(): 请求 TM 的 metric query service 地址;
  16. canBeReleased(): 检查 TM 是否可以被 realease;

把上面的 API 列表分分类,大概有以下几块:

  1. slot 的资源管理:slot 的分配/释放;
  2. task 运行:接收来自 JobManager 的 task 提交、也包括该 task 对应的 Partition(中间结果)信息;
  3. checkpoint 相关的处理;
  4. 心跳监控、连接建立等。

通常,可以任务 TaskManager 提供的功能主要是前三点,如下图所示:

TaskManager 提供的功能
TaskManager 提供的功能

TaskManager 怎么发现 RM leader(在使用 ZK 做 HA 的情况下)?

这个是 Flink HA 内容,Flink HA 机制是有一套统一的框架,它跟这个问题(TM 如何维护 JobManager 的关系,如果 JobManager 挂掉,TM 会如何处理? )的原理是一样的,这里以 ResourceManager Leader 的发现为例简单介一下。

这里,我们以使用 Zookeeper 模式的情况来讲述,ZooKeeper 做 HA 是业内最常用的方案,Flink 在实现并没有使用 ZkClient 这个包,而是使用 curator 来做的(有兴趣可以看下这篇文章 跟着实例学习ZooKeeper的用法: 缓存)。

关于 Flink HA 的使用,可以参考官方文档——JobManager High Availability (HA)。这里 TaskExecutor 在注册完 ResourceManagerLeaderListener 后,如果 leader 被选举出来或者有节点有变化,就通过它的 notifyLeaderAddress() 方法来通知 TaskExecutor,核心还是利用了 ZK 的 watcher 机制。同理, JobManager leader 的处理也是一样。

TM Slot 资源是如何管理的?

TaskManager Slot 资源的管理主要是在 TaskSlotTable 中处理的,slot 资源的申请与释放都通过 它处理的,相关的流程如下图所示(图中只描述了主要逻辑,相关的异常处理没有展示在图中):

TaskManager slot 的分配与释放
TaskManager slot 的分配与释放

slot 的申请

这里先看下 slot 资源请求的处理,其实现如下:

// TaskExecutor.java

//note: slot 请求
@Override
public CompletableFuture requestSlot(
    final SlotID slotId,
    final JobID jobId,
    final AllocationID allocationId,
    final String targetAddress,
    final ResourceManagerId resourceManagerId,
    final Time timeout) {
    // TODO: Filter invalid requests from the resource manager by using the instance/registration Id

    log.info("Receive slot request {} for job {} from resource manager with leader id {}.",
        allocationId, jobId, resourceManagerId);

    try {
        if (!isConnectedToResourceManager(resourceManagerId)) {
            //note: 如果 TM 并没有跟这个 RM 通信,就抛出异常
            final String message = String.format("TaskManager is not connected to the resource manager %s.", resourceManagerId);
            log.debug(message);
            throw new TaskManagerException(message);
        }

        if (taskSlotTable.isSlotFree(slotId.getSlotNumber())) {
            //note: Slot 状态是 free,还未分配出去
            if (taskSlotTable.allocateSlot(slotId.getSlotNumber(), jobId, allocationId, taskManagerConfiguration.getTimeout())) {
                log.info("Allocated slot for {}.", allocationId);
                //note: allcate 成功
            } else {
                log.info("Could not allocate slot for {}.", allocationId);
                throw new SlotAllocationException("Could not allocate slot.");
            }
        } else if (!taskSlotTable.isAllocated(slotId.getSlotNumber(), jobId, allocationId)) {
            //note: slot 已经分配出去,但分配的并不是当前这个作业
            final String message = "The slot " + slotId + " has already been allocated for a different job.";

            log.info(message);

            final AllocationID allocationID = taskSlotTable.getCurrentAllocation(slotId.getSlotNumber());
            throw new SlotOccupiedException(message, allocationID, taskSlotTable.getOwningJob(allocationID));
        }

        if (jobManagerTable.contains(jobId)) {
            //note: 如果 TM 已经有这个 JobManager 的 meta,这里会将这个 job 的 slot 分配再汇报给 JobManager 一次
            offerSlotsToJobManager(jobId);
        } else {
            try {
                //note: 监控这个作业 JobManager 的 leader 变化
                jobLeaderService.addJob(jobId, targetAddress);
            } catch (Exception e) {
                // free the allocated slot
                try {
                    taskSlotTable.freeSlot(allocationId);
                } catch (SlotNotFoundException slotNotFoundException) {
                    // slot no longer existent, this should actually never happen, because we've
                    // just allocated the slot. So let's fail hard in this case!
                    onFatalError(slotNotFoundException);
                }

                // release local state under the allocation id.
                localStateStoresManager.releaseLocalStateForAllocationId(allocationId);

                // sanity check
                if (!taskSlotTable.isSlotFree(slotId.getSlotNumber())) {
                    onFatalError(new Exception("Could not free slot " + slotId));
                }

                throw new SlotAllocationException("Could not add job to job leader service.", e);
            }
        }
    } catch (TaskManagerException taskManagerException) {
        return FutureUtils.completedExceptionally(taskManagerException);
    }

    return CompletableFuture.completedFuture(Acknowledge.get());
}

相应的处理逻辑如下:

首先检测这个这个 RM 是否当前建立连接的 RM,如果不是,就抛出相应的异常,需要等到 TM 连接上 RM 之后才能处理 RM 上的 slot 请求;
判断这个 slot 是否可以分配
如果 slot 是 FREE 状态,就进行分配(调用 TaskSlotTable 的 allocateSlot() 方法),如果分配失败,就抛出相应的异常;
如果 slot 已经分配,检查分配的是不是当前作业的 AllocationId,如果不是,也会抛出相应的异常,告诉 RM 这个 Slot 已经分配出去了;
如果 TM 已经有了这个 JobManager 的 meta,这里会将这个 job 在这个 TM 上的 slot 分配再重新汇报给 JobManager 一次;
而 TaskSlotTable 在处理 slot 的分配时,主要是根据内部缓存的信息做相应的检查,其 allocateSlot() 的方法的实现如下:

// TaskSlotTable.java
public boolean allocateSlot(int index, JobID jobId, AllocationID allocationId, Time slotTimeout) {
    checkInit();

    TaskSlot taskSlot = taskSlots.get(index);

    //note: 分配这个 TaskSlot
    boolean result = taskSlot.allocate(jobId, allocationId);

    if (result) {
        //note: 分配成功,记录到缓存中
        // update the allocation id to task slot map
        allocationIDTaskSlotMap.put(allocationId, taskSlot);

        // register a timeout for this slot since it's in state allocated
        timerService.registerTimeout(allocationId, slotTimeout.getSize(), slotTimeout.getUnit());

        // add this slot to the set of job slots
        Set slots = slotsPerJob.get(jobId);

        if (slots == null) {
            slots = new HashSet<>(4);
            slotsPerJob.put(jobId, slots);
        }

        slots.add(allocationId);
    }

    return result;
}

slot 的释放

这里再看下 Slot 的资源是如何释放的,代码实现如下:

// TaskExecutor.java

//note: 释放这个 slot 资源
@Override
public CompletableFuture freeSlot(AllocationID allocationId, Throwable cause, Time timeout) {
    freeSlotInternal(allocationId, cause);

    return CompletableFuture.completedFuture(Acknowledge.get());
}


//note: 将本地分配的 slot 释放掉(free the slot)
private void freeSlotInternal(AllocationID allocationId, Throwable cause) {
    checkNotNull(allocationId);

    log.debug("Free slot with allocation id {} because: {}", allocationId, cause.getMessage());

    try {
        final JobID jobId = taskSlotTable.getOwningJob(allocationId);

        //note: 释放这个 slot
        final int slotIndex = taskSlotTable.freeSlot(allocationId, cause);

        if (slotIndex != -1) {
            //note: 成功释放掉的情况下

            if (isConnectedToResourceManager()) {
                //note: 通知 ResourceManager 这个 slot 因为被释放了,所以可以变可用了
                // the slot was freed. Tell the RM about it
                ResourceManagerGateway resourceManagerGateway = establishedResourceManagerConnection.getResourceManagerGateway();

                resourceManagerGateway.notifySlotAvailable(
                    establishedResourceManagerConnection.getTaskExecutorRegistrationId(),
                    new SlotID(getResourceID(), slotIndex),
                    allocationId);
            }

            if (jobId != null) {
                closeJobManagerConnectionIfNoAllocatedResources(jobId);
            }
        }
    } catch (SlotNotFoundException e) {
        log.debug("Could not free slot for allocation id {}.", allocationId, e);
    }

    //note: 释放这个 allocationId 的相应状态信息
    localStateStoresManager.releaseLocalStateForAllocationId(allocationId);
}

总结一下,TaskExecutor 在处理 slot 释放请求的理逻辑如下:

先调用 TaskSlotTable 的 freeSlot() 方法,尝试释放这个 slot:
如果这个 slot 没有 task 在运行,那么 slot 是可以释放的(状态更新为 FREE);
先将 slot 状态更新为 RELEASING,然后再遍历这个 slot 上的 task,逐个将其标记为 failed;
如果 slot 被成功释放(状态是 FREE),这里将会通知 RM 这个 slot 现在又可用了;
更新缓存信息。

你可能感兴趣的:(TaskManager 启动流程)