机器学习 同样数量样本和目标_样本量极少如何机器学习?Few-Shot Learning概述

机器学习 同样数量样本和目标_样本量极少如何机器学习?Few-Shot Learning概述_第1张图片

1. 样本量极少可以训练机器学习模型吗?

在训练样本极少的情况下(几百个、几十个甚至几个样本),现有的机器学习和深度学习模型普遍无法取得良好的样本外表现,用小样本训练的模型很容易陷入对小样本的过拟合以及对目标任务的欠拟合。但基于小样本的模型训练又在工业界有着广泛的需求(单用户人脸和声纹识别、药物研发、推荐冷启动、欺诈识别等样本规模小或数据收集成本高的场景),Few-Shot Learning(小样本学习)通过将有限的监督信息(小样本)与先验知识(无标记或弱标记样本、其他数据集和标签、其他模型等)结合,使得模型可以有效的学习小样本中的信息。

本文的主要内容来自下面两篇Few-shot Learning的文献综述,结合笔者的理解对原paper进行了概括和总结,既作为自己的阅读笔记,也作为比原文更通俗简洁的快餐读物献给初次涉猎Few-shot Learning领域的读者们。

  • 2020年香港科技大学和第四范式的paper“Generalizing from a Few Examples: A Survey on Few-Shot Learning“,YAQING WANG, QUANMING YAO, JAMES T. KWOK,LIONEL M. NI
  • 2020年清华和滴滴的paper "Learning from Very Few Samples: A Survey"

你可能感兴趣的:(机器学习,同样数量样本和目标)