上一期主要介绍Kubernetes日志输出的一些注意事项,日志输出最终的目的还是做统一的采集和分析。在Kubernetes中,日志采集和普通虚拟机的方式有很大不同,相对实现难度和部署代价也略大,但若使用恰当则比传统方式自动化程度更高、运维代价更低。
在Kubernetes中,日志采集相比传统虚拟机、物理机方式要复杂很多,最根本的原因是Kubernetes把底层异常屏蔽,提供更加细粒度的资源调度,向上提供稳定、动态的环境。因此日志采集面对的是更加丰富、动态的环境,需要考虑的点也更加的多。
例如:
Kubernetes | 传统方式 | |
---|---|---|
日志种类 | 文件、stdout、宿主机文件、journal | 文件、journal |
日志源 | 业务容器、系统组件、宿主机 | 业务、宿主机 |
采集方式 | Agent(Sidecar、DaemonSet)、直写(DockerEngine、业务) | Agent、直写 |
单机应用数 | 10-100 | 1-10 |
应用动态性 | 高 | 低 |
节点动态性 | 高 | 低 |
采集部署方式 | 手动、Yaml | 手动、自定义 |
日志的采集方式分为被动采集和主动推送两种,在K8s中,被动采集一般分为Sidecar和DaemonSet两种方式,主动推送有DockerEngine推送和业务直写两种方式。
总结下来:DockerEngine直写一般不推荐;业务直写推荐在日志量极大的场景中使用;DaemonSet一般在中小型集群中使用;Sidecar推荐在超大型的集群中使用。详细的各种采集方式对比如下:
DockerEngine | 业务直写 | DaemonSet方式 | Sidecar方式 | |
---|---|---|---|---|
采集日志类型 | 标准输出 | 业务日志 | 标准输出+部分文件 | 文件 |
部署运维 | 低,原生支持 | 低,只需维护好配置文件即可 | 一般,需维护DaemonSet | 较高,每个需要采集日志的POD都需要部署sidecar容器 |
日志分类存储 | 无法实现 | 业务独立配置 | 一般,可通过容器/路径等映射 | 每个POD可单独配置,灵活性高 |
多租户隔离 | 弱 | 弱,日志直写会和业务逻辑竞争资源 | 一般,只能通过配置间隔离 | 强,通过容器进行隔离,可单独分配资源 |
支持集群规模 | 本地存储无限制,若使用syslog、fluentd会有单点限制 | 无限制 | 取决于配置数 | 无限制 |
资源占用 | 低,docker | |||
engine提供 | 整体最低,省去采集开销 | 较低,每个节点运行一个容器 | 较高,每个POD运行一个容器 | |
查询便捷性 | 低,只能grep原始日志 | 高,可根据业务特点进行定制 | 较高,可进行自定义的查询、统计 | 高,可根据业务特点进行定制 |
可定制性 | 低 | 高,可自由扩展 | 低 | 高,每个POD单独配置 |
耦合度 | 高,与DockerEngine强绑定,修改需要重启DockerEngine | 高,采集模块修改/升级需要重新发布业务 | 低,Agent可独立升级 | 一般,默认采集Agent升级对应Sidecar业务也会重启(有一些扩展包可以支持Sidecar热升级) |
适用场景 | 测试、POC等非生产场景 | 对性能要求极高的场景 | 日志分类明确、功能较单一的集群 | 大型、混合型、PAAS型集群 |
和虚拟机/物理机不同,K8s的容器提供标准输出和文件两种方式。在容器中,标准输出将日志直接输出到stdout或stderr,而DockerEngine接管stdout和stderr文件描述符,将日志接收后按照DockerEngine配置的LogDriver规则进行处理;日志打印到文件的方式和虚拟机/物理机基本类似,只是日志可以使用不同的存储方式,例如默认存储、EmptyDir、HostVolume、NFS等。
虽然使用Stdout打印日志是Docker官方推荐的方式,但大家需要注意这个推荐是基于容器只作为简单应用的场景,实际的业务场景中我们还是建议大家尽可能使用文件的方式,主要的原因有以下几点:
因此我们建议线上应用使用文件的方式输出日志,Stdout只在功能单一的应用或一些K8s系统/运维组件中使用。
Kubernetes提供了标准化的业务部署方式,可以通过yaml(K8s API)来声明路由规则、暴露服务、挂载存储、运行业务、定义缩扩容规则等,所以Kubernetes很容易和CICD系统集成。而日志采集也是运维监控过程中的重要部分,业务上线后的所有日志都要进行实时的收集。
原始的方式是在发布之后手动去部署日志采集的逻辑,这种方式需要手工干预,违背CICD自动化的宗旨;为了实现自动化,有人开始基于日志采集的API/SDK包装一个自动部署的服务,在发布后通过CICD的webhook触发调用,但这种方式的开发代价很高。
在Kubernetes中,日志最标准的集成方式是以一个新资源注册到Kubernetes系统中,以Operator(CRD)的方式来进行管理和维护。在这种方式下,CICD系统不需要额外的开发,只需在部署到Kubernetes系统时附加上日志相关的配置即可实现。
早在Kubernetes出现之前,我们就开始为容器环境开发日志采集方案,随着K8s的逐渐稳定,我们开始将很多业务迁移到K8s平台上,因此也基于之前的基础专门开发了一套K8s上的日志采集方案。主要具备的功能有:
目前这套采集方案已经对外开放,我们提供了一个Helm安装包,其中包括Logtail的DaemonSet、AliyunlogConfig的CRD声明以及CRD Controller,安装之后就能直接使用DaemonSet采集以及CRD配置了。安装方式如下:
安装好上述组件之后,Logtail和对应的Controller就会运行在集群中,但默认这些组件并不会采集任何日志,需要配置日志采集规则来采集指定Pod的各类日志。
除了在日志服务控制台上手动配置之外,对于Kubernetes还额外支持两种配置方式:环境变量和CRD。
环境变量是自swarm时代一直使用的配置方式,只需要在想要采集的容器环境变量上声明需要采集的数据地址即可,Logtail会自动将这些数据采集到服务端。这种方式部署简单,学习成本低,很容易上手;但能够支持的配置规则很少,很多高级配置(例如解析方式、过滤方式、黑白名单等)都不支持,而且这种声明的方式不支持修改/删除,每次修改其实都是创建1个新的采集配置,历史的采集配置需要手动清理,否则会造成资源浪费。
CRD配置方式是非常符合Kubernetes官方推荐的标准扩展方式,让采集配置以K8s资源的方式进行管理,通过向Kubernetes部署AliyunLogConfig这个特殊的CRD资源来声明需要采集的数据。例如下面的示例就是部署一个容器标准输出的采集,其中定义需要Stdout和Stderr都采集,并且排除环境变量中包含COLLEXT_STDOUT_FLAG:false的容器。
基于CRD的配置方式以Kubernetes标准扩展资源的方式进行管理,支持配置的增删改查完整语义,而且支持各种高级配置,是我们极其推荐的采集配置方式。
实际应用场景中,一般都是使用DaemonSet或DaemonSet与Sidecar混用方式,DaemonSet的优势是资源利用率高,但有一个问题是DaemonSet的所有Logtail都共享全局配置,而单一的Logtail有配置支撑的上限,因此无法支撑应用数比较多的集群。
上述是我们给出的推荐配置方式,核心的思想是:
绝大部分Kubernetes集群都属于中小型的,对于中小型没有明确的定义,一般应用数在500以内,节点规模1000以内,没有职能明确的Kubernetes平台运维。这种场景应用数不会特别多,DaemonSet可以支撑所有的采集配置:
对于一些用作PAAS平台的大型/超大型集群,一般业务在1000以上,节点规模也在1000以上,有专门的Kubernetes平台运维人员。这种场景下应用数没有限制,DaemonSet无法支持,因此必须使用Sidecar方式,整体规划如下:
原文链接
本文为云栖社区原创内容,未经允许不得转载。