Java核心知识点整理大全3-笔记

                        

目录:

                        2.7.6.1. 初始标记

                        2.7.6.2. 并发标记

                        2.7.6.3. 重新标记

                        2.7.6.4. 并发清除

                2.7.7. G1 收集器

                2.8. JAVA IO/NIO

                        2.8.1. 阻塞 IO 模型

                        2.8.2. 非阻塞 IO 模型        

                2.8.3. 多路复用 IO 模型

                        2.8.4. 信号驱动 IO 模型

                        2.8.5. 异步 IO 模型

                2.8.2. JAVA NIO

                2.8.2.1. NIO 的缓冲区

                2.8.2.2. NIO 的非阻塞

                2.8.3. Channel

                2.8.4. Buffer

                        2.8.5. Selector

                        2.9.JVM 类加载机制

                             2.9.1.1. 加载

                        2.9.1.2. 验证

                        2.9.1.3. 准备

                             


2.7.6.1. 初始标记

                只是标记一下 GC Roots 能直接关联的对象,速度很快,仍然需要暂停所有的工作线程

                        2.7.6.2. 并发标记

                进行 GC Roots 跟踪的过程,和用户线程一起工作,不需要暂停工作线程。

                        2.7.6.3. 重新标记

                为了修正在并发标记期间,因用户程序继续运行而导致标记产生变动的那一部分对象的标记 记录,仍然需要暂停所有的工作线程。

                        2.7.6.4. 并发清除

                清除 GC Roots 不可达对象,和用户线程一起工作,不需要暂停工作线程。由于耗时最长的并 发标记和并发清除过程中,垃圾收集线程可以和用户现在一起并发工作,所以总体上来看 CMS 收集器的内存回收和用户线程是一起并发地执行。

                2.7.7. G1 收集器

        Garbage first 垃圾收集器是目前垃圾收集器理论发展的最前沿成果,相比与 CMS 收集器,G1 收 集器两个最突出的改进是:

1. 基于标记-整理算法,不产生内存碎片。

2. 可以非常精确控制停顿时间,在不牺牲吞吐量前提下,实现低停顿垃圾回收。 G1 收集器避免全区域垃圾收集,它把堆内存划分为大小固定的几个独立区域,并且跟踪这些区域 的垃圾收集进度,同时在后台维护一个优先级列表,每次根据所允许的收集时间,优先回收垃圾 最多的区域。区域划分和优先级区域回收机制,确保 G1 收集器可以在有限时间获得最高的垃圾收 集效率.

                2.8. JAVA IO/NIO

                        2.8.1. 阻塞 IO 模型

                    最传统的一种 IO 模型,即在读写数据过程中会发生阻塞现象。当用户线程发出 IO 请求之后,内 核会去查看数据是否就绪,如果没有就绪就会等待数据就绪,而用户线程就会处于阻塞状态,用 户线程交出 CPU。当数据就绪之后,内核会将数据拷贝到用户线程,并返回结果给用户线程,用户线程才解除 block 状态。典型的阻塞 IO 模型的例子为:data = socket.read();如果数据没有就 绪,就会一直阻塞在 read 方法。

                        2.8.2. 非阻塞 IO 模型        

                当用户线程发起一个 read 操作后,并不需要等待,而是马上就得到了一个结果。如果结果是一个 error 时,它就知道数据还没有准备好,于是它可以再次发送 read 操作。一旦内核中的数据准备 好了,并且又再次收到了用户线程的请求,那么它马上就将数据拷贝到了用户线程,然后返回。 所以事实上,在非阻塞 IO 模型中,用户线程需要不断地询问内核数据是否就绪,也就说非阻塞 IO 不会交出 CPU,而会一直占用 CPU。典型的非阻塞 IO 模型一般如下:

Java核心知识点整理大全3-笔记_第1张图片        但是对于非阻塞 IO 就有一个非常严重的问题,在 while 循环中需要不断地去询问内核数据是否就 绪,这样会导致 CPU 占用率非常高,因此一般情况下很少使用 while 循环这种方式来读取数据。

                2.8.3. 多路复用 IO 模型

                        多路复用 IO 模型是目前使用得比较多的模型。Java NIO 实际上就是多路复用 IO。在多路复用 IO 模型中,会有一个线程不断去轮询多个 socket 的状态,只有当 socket 真正有读写事件时,才真 正调用实际的 IO 读写操作。因为在多路复用 IO 模型中,只需要使用一个线程就可以管理多个 socket,系统不需要建立新的进程或者线程,也不必维护这些线程和进程,并且只有在真正有 socket 读写事件进行时,才会使用 IO 资源,所以它大大减少了资源占用。在 Java NIO 中,是通 过 selector.select()去查询每个通道是否有到达事件,如果没有事件,则一直阻塞在那里,因此这 种方式会导致用户线程的阻塞。多路复用 IO 模式,通过一个线程就可以管理多个 socket,只有当 socket 真正有读写事件发生才会占用资源来进行实际的读写操作。因此,多路复用 IO 比较适合连 接数比较多的情况。

        另外多路复用 IO 为何比非阻塞 IO 模型的效率高是因为在非阻塞 IO 中,不断地询问 socket 状态 时通过用户线程去进行的,而在多路复用 IO 中,轮询每个 socket 状态是内核在进行的,这个效 率要比用户线程要高的多。

         不过要注意的是,多路复用 IO 模型是通过轮询的方式来检测是否有事件到达,并且对到达的事件 逐一进行响应。因此对于多路复用 IO 模型来说,一旦事件响应体很大,那么就会导致后续的事件 迟迟得不到处理,并且会影响新的事件轮询。

                        2.8.4. 信号驱动 IO 模型

                        在信号驱动 IO 模型中,当用户线程发起一个 IO 请求操作,会给对应的 socket 注册一个信号函 数,然后用户线程会继续执行,当内核数据就绪时会发送一个信号给用户线程,用户线程接收到 信号之后,便在信号函数中调用 IO 读写操作来进行实际的 IO 请求操作。

                        2.8.5. 异步 IO 模型

                        异步 IO 模型才是最理想的 IO 模型,在异步 IO 模型中,当用户线程发起 read 操作之后,立刻就 可以开始去做其它的事。而另一方面,从内核的角度,当它受到一个 asynchronous read 之后, 它会立刻返回,说明 read 请求已经成功发起了,因此不会对用户线程产生任何 block。然后,内 核会等待数据准备完成,然后将数据拷贝到用户线程,当这一切都完成之后,内核会给用户线程 发送一个信号,告诉它 read 操作完成了。也就说用户线程完全不需要实际的整个 IO 操作是如何 进行的,只需要先发起一个请求,当接收内核返回的成功信号时表示 IO 操作已经完成,可以直接 去使用数据了。

                        也就说在异步 IO 模型中,IO 操作的两个阶段都不会阻塞用户线程,这两个阶段都是由内核自动完 成,然后发送一个信号告知用户线程操作已完成。用户线程中不需要再次调用 IO 函数进行具体的 读写。这点是和信号驱动模型有所不同的,在信号驱动模型中,当用户线程接收到信号表示数据 已经就绪,然后需要用户线程调用 IO 函数进行实际的读写操作;而在异步 IO 模型中,收到信号 表示 IO 操作已经完成,不需要再在用户线程中调用 IO 函数进行实际的读写操作。

                2.8.2. JAVA NIO

                                NIO 主要有三大核心部分:Channel(通道),Buffer(缓冲区), Selector。传统 IO 基于字节流和字 符流进行操作,而 NIO 基于 Channel 和 Buffer(缓冲区)进行操作,数据总是从通道读取到缓冲区 中,或者从缓冲区写入到通道中。Selector(选择区)用于监听多个通道的事件(比如:连接打开, 数据到达)。因此,单个线程可以监听多个数据通道。

                        Java核心知识点整理大全3-笔记_第2张图片

NIO 和传统 IO 之间第一个最大的区别是,IO 是面向流的,NIO 是面向缓冲区的。

                2.8.2.1. NIO 的缓冲区

                        Java IO 面向流意味着每次从流中读一个或多个字节,直至读取所有字节,它们没有被缓存在任何 地方。此外,它不能前后移动流中的数据。如果需要前后移动从流中读取的数据,需要先将它缓 存到一个缓冲区。NIO 的缓冲导向方法不同。数据读取到一个它稍后处理的缓冲区,需要时可在 缓冲区中前后移动。这就增加了处理过程中的灵活性。但是,还需要检查是否该缓冲区中包含所 有您需要处理的数据。而且,需确保当更多的数据读入缓冲区时,不要覆盖缓冲区里尚未处理的 数据。

                2.8.2.2. NIO 的非阻塞

                         IO 的各种流是阻塞的。这意味着,当一个线程调用 read() 或 write()时,该线程被阻塞,直到有 一些数据被读取,或数据完全写入。该线程在此期间不能再干任何事情了。 NIO 的非阻塞模式, 使一个线程从某通道发送请求读取数据,但是它仅能得到目前可用的数据,如果目前没有数据可 用时,就什么都不会获取。而不是保持线程阻塞,所以直至数据变的可以读取之前,该线程可以 继续做其他的事情。 非阻塞写也是如此。一个线程请求写入一些数据到某通道,但不需要等待它 完全写入,这个线程同时可以去做别的事情。 线程通常将非阻塞 IO 的空闲时间用于在其它通道上 执行 IO 操作,所以一个单独的线程现在可以管理多个输入和输出通道(channel)。

                2.8.3. Channel

                        首先说一下 Channel,国内大多翻译成“通道”。Channel 和 IO 中的 Stream(流)是差不多一个 等级的。只不过 Stream 是单向的,譬如:InputStream, OutputStream,而 Channel 是双向 的,既可以用来进行读操作,又可以用来进行写操作。 NIO 中的 Channel 的主要实现有:

        1. FileChannel

        2. DatagramChannel

        3. SocketChannel

        4. ServerSocketChannel

这里看名字就可以猜出个所以然来:分别可以对应文件 IO、UDP 和 TCP(Server 和 Client)。 下面演示的案例基本上就是围绕这 4 个类型的 Channel 进行陈述的。

                2.8.4. Buffer

                Buffer,故名思意,缓冲区,实际上是一个容器,是一个连续数组。Channel 提供从文件、 网络读取数据的渠道,但是读取或写入的数据都必须经由 Buffer。

        Java核心知识点整理大全3-笔记_第3张图片

                        上面的图描述了从一个客户端向服务端发送数据,然后服务端接收数据的过程。客户端发送 数据时,必须先将数据存入 Buffer 中,然后将 Buffer 中的内容写入通道。服务端这边接收数据必 须通过 Channel 将数据读入到 Buffer 中,然后再从 Buffer 中取出数据来处理。

                 在 NIO 中,Buffer 是一个顶层父类,它是一个抽象类,常用的 Buffer 的子类有: ByteBuffer、IntBuffer、 CharBuffer、 LongBuffer、 DoubleBuffer、FloatBuffer、 ShortBuffer

                        2.8.5. Selector

                Selector 类是 NIO 的核心类,Selector 能够检测多个注册的通道上是否有事件发生,如果有事 件发生,便获取事件然后针对每个事件进行相应的响应处理。这样一来,只是用一个单线程就可 以管理多个通道,也就是管理多个连接。这样使得只有在连接真正有读写事件发生时,才会调用 函数来进行读写,就大大地减少了系统开销,并且不必为每个连接都创建一个线程,不用去维护 多个线程,并且避免了多线程之间的上下文切换导致的开销。

                        2.9.JVM 类加载机制

                JVM 类加载机制分为五个部分:加载,验证,准备,解析,初始化,下面我们就分别来看一下这 五个过程,如下:

Java核心知识点整理大全3-笔记_第4张图片

                             2.9.1.1. 加载

                   加载是类加载过程中的一个阶段,这个阶段会在内存中生成一个代表这个类的 java.lang.Class 对 象,作为方法区这个类的各种数据的入口。注意这里不一定非得要从一个 Class 文件获取,这里既 可以从 ZIP 包中读取(比如从 jar 包和 war 包中读取),也可以在运行时计算生成(动态代理), 也可以由其它文件生成(比如将 JSP 文件转换成对应的 Class 类)

                        2.9.1.2. 验证

                这一阶段的主要目的是为了确保 Class 文件的字节流中包含的信息是否符合当前虚拟机的要求,并 且不会危害虚拟机自身的安全。

                        2.9.1.3. 准备

                准备阶段是正式为类变量分配内存并设置类变量的初始值阶段,即在方法区中分配这些变量所使 用的内存空间。注意这里所说的初始值概念,比如一个类变量定义为:

        

                实际上变量 v 在准备阶段过后的初始值为 0 而不是 8080,将 v 赋值为 8080 的 put static 指令是 程序被编译后,存放于类构造器方法之中。

                        但是注意如果声明为:

                

                在编译阶段会为 v 生成 ConstantValue 属性,在准备阶段虚拟机会根据 ConstantValue 属性将 v 赋值为 8080。

                             

                        解析阶段是指虚拟机将常量池中的符号引用替换为直接引用的过程。符号引用就是 class 文件中 的:        

                1. CONSTANT_Class_info

                2. CONSTANT_Field_info

                3. CONSTANT_Method_info

等类型的常量。

你可能感兴趣的:(Java,java,笔记,jvm)