本文章转自代码随想录
给定两个单词 word1
和 word2
,返回使得 word1
和 word2
相同所需的最小步数。
每步 可以删除任意一个字符串中的一个字符。
示例 1:
输入: word1 = "sea", word2 = "eat" 输出: 2 解释: 第一步将 "sea" 变为 "ea" ,第二步将 "eat "变为 "ea"
示例 2:
输入:word1 = "leetcode", word2 = "etco" 输出:4
提示:
1 <= word1.length, word2.length <= 500
word1
和 word2
只包含小写英文字母本题和动态规划:115.不同的子序列
(opens new window)相比,其实就是两个字符串都可以删除了,情况虽说复杂一些,但整体思路是不变的。
这次是两个字符串可以相互删了,这种题目也知道用动态规划的思路来解,动规五部曲,分析如下:
dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。
这里dp数组的定义有点点绕,大家要撸清思路。
当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];
当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:
情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1
情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1
情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2
那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
这里可能不少录友有点迷糊,从字面上理解 就是 当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么我在删 word1[i - 1],是不是就达到两个元素都删除的效果,即 dp[i][j-1] + 1。
从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。
dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。
dp[0][j]的话同理,所以代码如下:
vector> dp(word1.size() + 1, vector(word2.size() + 1));
for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
从递推公式 dp[i][j] = min(dp[i - 1][j - 1] + 2, min(dp[i - 1][j], dp[i][j - 1]) + 1); 和dp[i][j] = dp[i - 1][j - 1]可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的。
所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。
以word1:"sea",word2:"eat"为例,推导dp数组状态图如下:
以上分析完毕,代码如下:
class Solution {
public:
int minDistance(string word1, string word2) {
vector> dp(word1.size() + 1, vector(word2.size() + 1));
for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
for (int i = 1; i <= word1.size(); i++) {
for (int j = 1; j <= word2.size(); j++) {
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
}
}
}
return dp[word1.size()][word2.size()];
}
};
本题和动态规划:1143.最长公共子序列
(opens new window)基本相同,只要求出两个字符串的最长公共子序列长度即可,那么除了最长公共子序列之外的字符都是必须删除的,最后用两个字符串的总长度减去两个最长公共子序列的长度就是删除的最少步数。
代码如下:
class Solution {
public:
int minDistance(string word1, string word2) {
vector> dp(word1.size()+1, vector(word2.size()+1, 0));
for (int i=1; i<=word1.size(); i++){
for (int j=1; j<=word2.size(); j++){
if (word1[i-1] == word2[j-1]) dp[i][j] = dp[i-1][j-1] + 1;
else dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
}
}
return word1.size()+word2.size()-dp[word1.size()][word2.size()]*2;
}
};
给你两个单词 word1
和 word2
, 请返回将 word1
转换成 word2
所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
示例 1:
输入:word1 = "horse", word2 = "ros" 输出:3 解释: horse -> rorse (将 'h' 替换为 'r') rorse -> rose (删除 'r') rose -> ros (删除 'e')
示例 2:
输入:word1 = "intention", word2 = "execution" 输出:5 解释: intention -> inention (删除 't') inention -> enention (将 'i' 替换为 'e') enention -> exention (将 'n' 替换为 'x') exention -> exection (将 'n' 替换为 'c') exection -> execution (插入 'u')
提示:
0 <= word1.length, word2.length <= 500
word1
和 word2
由小写英文字母组成编辑距离终于来了,这道题目如果大家没有了解动态规划的话,会感觉超级复杂。
编辑距离是用动规来解决的经典题目,这道题目看上去好像很复杂,但用动规可以很巧妙的算出最少编辑距离。
接下来我依然使用动规五部曲,对本题做一个详细的分析:
dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。
有同学问了,为啥要表示下标i-1为结尾的字符串呢,为啥不表示下标i为结尾的字符串呢?
为什么这么定义我在 718. 最长重复子数组
(opens new window) 中做了详细的讲解。
其实用i来表示也可以! 用i-1就是为了方便后面dp数组初始化的。
在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:
if (word1[i - 1] == word2[j - 1])
不操作
if (word1[i - 1] != word2[j - 1])
增
删
换
也就是如上4种情况。
if (word1[i - 1] == word2[j - 1])
那么说明不用任何编辑,dp[i][j]
就应该是 dp[i - 1][j - 1]
,即dp[i][j] = dp[i - 1][j - 1];
此时可能有同学有点不明白,为啥要即dp[i][j] = dp[i - 1][j - 1]
呢?
那么就在回顾上面讲过的dp[i][j]
的定义,word1[i - 1]
与 word2[j - 1]
相等了,那么就不用编辑了,以下标i-2为结尾的字符串word1和以下标j-2为结尾的字符串word2
的最近编辑距离dp[i - 1][j - 1]
就是 dp[i][j]
了。
在下面的讲解中,如果哪里看不懂,就回想一下dp[i][j]
的定义,就明白了。
在整个动规的过程中,最为关键就是正确理解dp[i][j]
的定义!
if (word1[i - 1] != word2[j - 1])
,此时就需要编辑了,如何编辑呢?
即 dp[i][j] = dp[i - 1][j] + 1;
即 dp[i][j] = dp[i][j - 1] + 1;
这里有同学发现了,怎么都是删除元素,添加元素去哪了。
word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a"
,word1
删除元素'd'
和 word2
添加一个元素'd'
,变成word1="a", word2="ad"
, 最终的操作数是一样! dp数组如下图所示意的:
a a d
+-----+-----+ +-----+-----+-----+
| 0 | 1 | | 0 | 1 | 2 |
+-----+-----+ ===> +-----+-----+-----+
a | 1 | 0 | a | 1 | 0 | 1 |
+-----+-----+ +-----+-----+-----+
d | 2 | 1 |
+-----+-----+
操作三:替换元素,word1
替换word1[i - 1]
,使其与word2[j - 1]
相同,此时不用增删加元素。
可以回顾一下,if (word1[i - 1] == word2[j - 1])
的时候我们的操作 是 dp[i][j] = dp[i - 1][j - 1]
对吧。
那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。
所以 dp[i][j] = dp[i - 1][j - 1] + 1;
综上,当 if (word1[i - 1] != word2[j - 1])
时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
递归公式代码如下:
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
}
else {
dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}
再回顾一下dp[i][j]的定义:
dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。
那么dp[i][0] 和 dp[0][j] 表示什么呢?
dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。
那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;
同理dp[0][j] = j;
所以C++代码如下:
for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
从如下四个递推公式:
dp[i][j] = dp[i - 1][j - 1]
dp[i][j] = dp[i - 1][j - 1] + 1
dp[i][j] = dp[i][j - 1] + 1
dp[i][j] = dp[i - 1][j] + 1
可以看出dp[i][j]是依赖左方,上方和左上方元素的,如图:
所以在dp矩阵中一定是从左到右从上到下去遍历。
代码如下:
for (int i = 1; i <= word1.size(); i++) {
for (int j = 1; j <= word2.size(); j++) {
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
}
else {
dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}
}
}
以示例1为例,输入:word1 = "horse", word2 = "ros"
为例,dp矩阵状态图如下:
以上动规五部分析完毕,C++代码如下:
class Solution {
public:
int minDistance(string word1, string word2) {
vector> dp(word1.size() + 1, vector(word2.size() + 1, 0));
for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
for (int i = 1; i <= word1.size(); i++) {
for (int j = 1; j <= word2.size(); j++) {
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
}
else {
dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}
}
}
return dp[word1.size()][word2.size()];
}
};
本周我们讲了动态规划之终极绝杀:编辑距离,为什么叫做终极绝杀呢?
细心的录友应该知道,我们在前三篇动态规划的文章就一直为 编辑距离 这道题目做铺垫。
动态规划:392.判断子序列
(opens new window) 给定字符串 s 和 t ,判断 s 是否为 t 的子序列。
这道题目 其实是可以用双指针或者贪心的的,但是我在开篇的时候就说了这是编辑距离的入门题目,因为从题意中我们也可以发现,只需要计算删除的情况,不用考虑增加和替换的情况。
状态转移方程:
if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = dp[i][j - 1];
动态规划:115.不同的子序列
(opens new window) 给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。
本题虽然也只有删除操作,不用考虑替换增加之类的,但相对于动态规划:392.判断子序列
(opens new window)就有难度了,这道题目双指针法可就做不了。
当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。
一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。
一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。
这里可能有同学不明白了,为什么还要考虑 不用s[i - 1]来匹配,都相同了指定要匹配啊。
例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。
当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。
所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配,即:dp[i - 1][j]
所以递推公式为:dp[i][j] = dp[i - 1][j];
状态转移方程:
if (s[i - 1] == t[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j];
}
动态规划:583.两个字符串的删除操作
(opens new window)给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符。
本题和动态规划:115.不同的子序列
(opens new window)相比,其实就是两个字符串可以都可以删除了,情况虽说复杂一些,但整体思路是不变的。
当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];
当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:
情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1
情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1
情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2
那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
状态转移方程:
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
}
动态规划:72.编辑距离
(opens new window) 给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
编辑距离终于来了,有了前面三道题目的铺垫,应该有思路了,本题是两个字符串可以增删改,比 动态规划:判断子序列
(opens new window),动态规划:不同的子序列 (opens new window),动态规划:两个字符串的删除操作
(opens new window)都要复杂的多。
在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:
也就是如上四种情况。
if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];
此时可能有同学有点不明白,为啥要即dp[i][j] = dp[i - 1][j - 1]呢?
那么就在回顾上面讲过的dp[i][j]的定义,word1[i - 1] 与 word2[j - 1]相等了,那么就不用编辑了,以下标i-2为结尾的字符串word1和以下标j-2为结尾的字符串word2的最近编辑距离dp[i - 1][j - 1] 就是 dp[i][j]了。
在下面的讲解中,如果哪里看不懂,就回想一下dp[i][j]的定义,就明白了。
在整个动规的过程中,最为关键就是正确理解dp[i][j]的定义!
if (word1[i - 1] != word2[j - 1]),此时就需要编辑了,如何编辑呢?
操作一:word1增加一个元素,使其word1[i - 1]与word2[j - 1]相同,那么就是以下标i-2为结尾的word1 与 i-1为结尾的word2的最近编辑距离 加上一个增加元素的操作。
即 dp[i][j] = dp[i - 1][j] + 1;
操作二:word2添加一个元素,使其word1[i - 1]与word2[j - 1]相同,那么就是以下标i-1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 加上一个增加元素的操作。
即 dp[i][j] = dp[i][j - 1] + 1;
这里有同学发现了,怎么都是添加元素,删除元素去哪了。
word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a",word2添加一个元素d,也就是相当于word1删除一个元素d,操作数是一样!
操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增加元素,那么以下标i-2为结尾的word1 与 j-2为结尾的word2的最近编辑距离 加上一个替换元素的操作。
即 dp[i][j] = dp[i - 1][j - 1] + 1;
综上,当 if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
递归公式代码如下:
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
}
else {
dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}
心思的录友应该会发现我用了三道题做铺垫,才最后引出了动态规划:72.编辑距离
(opens new window) ,Carl的良苦用心呀,你们体会到了嘛!