本教程基于韦东山百问网出的 DShanMCU-F103开发板 进行编写,需要的同学可以在这里获取: https://item.taobao.com/item.htm?id=724601559592
配套资料获取:https://rtos.100ask.net/zh/freeRTOS/DShanMCU-F103
freeRTOS系列教程之freeRTOS入门与工程实践章节汇总: https://blog.csdn.net/qq_35181236/article/details/132842016
队列(queue)可以用于"任务到任务"、“任务到中断”、"中断到任务"直接传输信息。
本章涉及如下内容:
队列的简化操如入下图所示,从此图可知:
更详细的操作入下图所示:
使用队列传输数据时有两种方法:
FreeRTOS使用拷贝值的方法,这更简单:
只要知道队列的句柄,谁都可以读、写该队列。任务、ISR都可读、写队列。可以多个任务读写队列。
任务读写队列时,简单地说:如果读写不成功,则阻塞;可以指定超时时间。口语化地说,就是可以定个闹钟:如果能读写了就马上进入就绪态,否则就阻塞直到超时。
某个任务读队列时,如果队列没有数据,则该任务可以进入阻塞状态:还可以指定阻塞的时间。如果队列有数据了,则该阻塞的任务会变为就绪态。如果一直都没有数据,则时间到之后它也会进入就绪态。
既然读取队列的任务个数没有限制,那么当多个任务读取空队列时,这些任务都会进入阻塞状态:有多个任务在等待同一个队列的数据。当队列中有数据时,哪个任务会进入就绪态?
跟读队列类似,一个任务要写队列时,如果队列满了,该任务也可以进入阻塞状态:还可以指定阻塞的时间。如果队列有空间了,则该阻塞的任务会变为就绪态。如果一直都没有空间,则时间到之后它也会进入就绪态。
既然写队列的任务个数没有限制,那么当多个任务写"满队列"时,这些任务都会进入阻塞状态:有多个任务在等待同一个队列的空间。当队列中有空间时,哪个任务会进入就绪态?
使用队列的流程:创建队列、写队列、读队列、删除队列。
队列的创建有两种方法:动态分配内存、静态分配内存,
函数原型如下:
QueueHandle_t xQueueCreate( UBaseType_t uxQueueLength, UBaseType_t uxItemSize );
参数 | 说明 |
---|---|
uxQueueLength | 队列长度,最多能存放多少个数据(item) |
uxItemSize | 每个数据(item)的大小:以字节为单位 |
返回值 | 非0:成功,返回句柄,以后使用句柄来操作队列 NULL:失败,因为内存不足 |
函数原型如下:
QueueHandle_t xQueueCreateStatic(*
UBaseType_t uxQueueLength,*
UBaseType_t uxItemSize,*
uint8_t *pucQueueStorageBuffer,*
StaticQueue_t *pxQueueBuffer*
);
参数 | 说明 |
---|---|
uxQueueLength | 队列长度,最多能存放多少个数据(item) |
uxItemSize | 每个数据(item)的大小:以字节为单位 |
pucQueueStorageBuffer | 如果uxItemSize非0,pucQueueStorageBuffer必须指向一个uint8_t数组, 此数组大小至少为"uxQueueLength * uxItemSize" |
pxQueueBuffer | 必须执行一个StaticQueue_t结构体,用来保存队列的数据结构 |
返回值 | 非0:成功,返回句柄,以后使用句柄来操作队列 NULL:失败,因为pxQueueBuffer为NULL |
示例代码:
// 示例代码
#define QUEUE_LENGTH 10
#define ITEM_SIZE sizeof( uint32_t )
// xQueueBuffer用来保存队列结构体
StaticQueue_t xQueueBuffer;
// ucQueueStorage 用来保存队列的数据
// 大小为:队列长度 * 数据大小
uint8_t ucQueueStorage[ QUEUE_LENGTH * ITEM_SIZE ];
void vATask( void *pvParameters )
{
QueueHandle_t xQueue1;
// 创建队列: 可以容纳QUEUE_LENGTH个数据,每个数据大小是ITEM_SIZE
xQueue1 = xQueueCreateStatic( QUEUE_LENGTH,
ITEM_SIZE,
ucQueueStorage,
&xQueueBuffer );
}
队列刚被创建时,里面没有数据;使用过程中可以调用**xQueueReset()**把队列恢复为初始状态,此函数原型为:
/* pxQueue : 复位哪个队列;
* 返回值: pdPASS(必定成功)
*/
BaseType_t xQueueReset( QueueHandle_t pxQueue);
删除队列的函数为vQueueDelete(),只能删除使用动态方法创建的队列,它会释放内存。原型如下:
void vQueueDelete( QueueHandle_t xQueue );
可以把数据写到队列头部,也可以写到尾部,这些函数有两个版本:在任务中使用、在ISR中使用。函数原型如下:
/* 等同于xQueueSendToBack
* 往队列尾部写入数据,如果没有空间,阻塞时间为xTicksToWait
*/
BaseType_t xQueueSend(
QueueHandle_t xQueue,
const void *pvItemToQueue,
TickType_t xTicksToWait
);
/*
* 往队列尾部写入数据,如果没有空间,阻塞时间为xTicksToWait
*/
BaseType_t xQueueSendToBack(
QueueHandle_t xQueue,
const void *pvItemToQueue,
TickType_t xTicksToWait
);
/*
* 往队列尾部写入数据,此函数可以在中断函数中使用,不可阻塞
*/
BaseType_t xQueueSendToBackFromISR(
QueueHandle_t xQueue,
const void *pvItemToQueue,
BaseType_t *pxHigherPriorityTaskWoken
);
/*
* 往队列头部写入数据,如果没有空间,阻塞时间为xTicksToWait
*/
BaseType_t xQueueSendToFront(
QueueHandle_t xQueue,
const void *pvItemToQueue,
TickType_t xTicksToWait
);
/*
* 往队列头部写入数据,此函数可以在中断函数中使用,不可阻塞
*/
BaseType_t xQueueSendToFrontFromISR(
QueueHandle_t xQueue,
const void *pvItemToQueue,
BaseType_t *pxHigherPriorityTaskWoken
);
这些函数用到的参数是类似的,统一说明如下:
参数 | 说明 |
---|---|
xQueue | 队列句柄,要写哪个队列 |
pvItemToQueue | 数据指针,这个数据的值会被复制进队列, 复制多大的数据?在创建队列时已经指定了数据大小 |
xTicksToWait | 如果队列满则无法写入新数据,可以让任务进入阻塞状态, xTicksToWait表示阻塞的最大时间(Tick Count)。 如果被设为0,无法写入数据时函数会立刻返回; 如果被设为portMAX_DELAY,则会一直阻塞直到有空间可写 |
返回值 | pdPASS:数据成功写入了队列 errQUEUE_FULL:写入失败,因为队列满了。 |
使用**xQueueReceive()**函数读队列,读到一个数据后,队列中该数据会被移除。这个函数有两个版本:在任务中使用、在ISR中使用。函数原型如下:
BaseType_t xQueueReceive( QueueHandle_t xQueue,
void * const pvBuffer,
TickType_t xTicksToWait );
BaseType_t xQueueReceiveFromISR(
QueueHandle_t xQueue,
void *pvBuffer,
BaseType_t *pxTaskWoken
);
参数说明如下:
参数 | 说明 |
---|---|
xQueue | 队列句柄,要读哪个队列 |
pvBuffer | bufer指针,队列的数据会被复制到这个buffer 复制多大的数据?在创建队列时已经指定了数据大小 |
xTicksToWait | 果队列空则无法读出数据,可以让任务进入阻塞状态, xTicksToWait表示阻塞的最大时间(Tick Count)。 如果被设为0,无法读出数据时函数会立刻返回; 如果被设为portMAX_DELAY,则会一直阻塞直到有数据可写 |
返回值 | pdPASS:从队列读出数据入 errQUEUE_EMPTY:读取失败,因为队列空了。 |
可以查询队列中有多少个数据、有多少空余空间。函数原型如下:
/*
* 返回队列中可用数据的个数
*/
UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue );
/*
* 返回队列中可用空间的个数
*/
UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue );
当队列长度为1时,可以使用**xQueueOverwrite()或xQueueOverwriteFromISR()**来覆盖数据。
注意,队列长度必须为1。当队列满时,这些函数会覆盖里面的数据,这也以为着这些函数不会被阻塞。
函数原型如下:
/* 覆盖队列
* xQueue: 写哪个队列
* pvItemToQueue: 数据地址
* 返回值: pdTRUE表示成功, pdFALSE表示失败
*/
BaseType_t xQueueOverwrite(
QueueHandle_t xQueue,
const void * pvItemToQueue
);
BaseType_t xQueueOverwriteFromISR(
QueueHandle_t xQueue,
const void * pvItemToQueue,
BaseType_t *pxHigherPriorityTaskWoken
);
如果想让队列中的数据供多方读取,也就是说读取时不要移除数据,要留给后来人。那么可以使用"窥视",也就是xQueuePeek()或xQueuePeekFromISR()。这些函数会从队列中复制出数据,但是不移除数据。这也意味着,如果队列中没有数据,那么"偷看"时会导致阻塞;一旦队列中有数据,以后每次"偷看"都会成功。
函数原型如下:
/* 偷看队列
* xQueue: 偷看哪个队列
* pvItemToQueue: 数据地址, 用来保存复制出来的数据
* xTicksToWait: 没有数据的话阻塞一会
* 返回值: pdTRUE表示成功, pdFALSE表示失败
*/
BaseType_t xQueuePeek(
QueueHandle_t xQueue,
void * const pvBuffer,
TickType_t xTicksToWait
);
BaseType_t xQueuePeekFromISR(
QueueHandle_t xQueue,
void *pvBuffer,
);
本节代码为:13_queue_game。以前使用环形缓冲区传输红外遥控器的数据,本程序改为使用队列。
本节代码为:14_queue_game_multi_input。
本节代码为:FreeRTOS_10_queue_bigtransfer。
FreeRTOS的队列使用拷贝传输,也就是要传输uint32_t时,把4字节的数据拷贝进队列;要传输一个8字节的结构体时,把8字节的数据拷贝进队列。
如果要传输1000字节的结构体呢?写队列时拷贝1000字节,读队列时再拷贝1000字节?不建议这么做,影响效率!
这时候,我们要传输的是这个巨大结构体的地址:把它的地址写入队列,对方从队列得到这个地址,使用地址去访问那1000字节的数据。
使用地址来间接传输数据时,这些数据放在RAM里,对于这块RAM,要保证这几点:
这块RAM应该是全局变量,或者是动态分配的内存。对于动然分配的内存,要确保它不能提前释放:要等到接收者用完后再释放。另外,不能是局部变量。
FreeRTOS_10_queue_bigtransfer程序会创建一个队列,然后创建1个发送任务、1个接收任务:
这个程序故意设置接收任务的优先级更高,在它访问数组的过程中,接收任务无法执行、无法写这个数组。
main函数中创建了队列、创建了发送任务、接收任务,代码如下:
/* 定义一个字符数组 */
static char pcBuffer[100];
/* vSenderTask被用来创建2个任务,用于写队列
* vReceiverTask被用来创建1个任务,用于读队列
*/
static void vSenderTask( void *pvParameters );
static void vReceiverTask( void *pvParameters );
/*-----------------------------------------------------------*/
/* 队列句柄, 创建队列时会设置这个变量 */
QueueHandle_t xQueue;
int main( void )
{
prvSetupHardware();
/* 创建队列: 长度为1,数据大小为4字节(存放一个char指针) */
xQueue = xQueueCreate( 1, sizeof(char *) );
if( xQueue != NULL )
{
/* 创建1个任务用于写队列
* 任务函数会连续执行,构造buffer数据,把buffer地址写入队列
* 优先级为1
*/
xTaskCreate( vSenderTask, "Sender", 1000, NULL, 1, NULL );
/* 创建1个任务用于读队列
* 优先级为2, 高于上面的两个任务
* 这意味着读队列得到buffer地址后,本任务使用buffer时不会被打断
*/
xTaskCreate( vReceiverTask, "Receiver", 1000, NULL, 2, NULL );
/* 启动调度器 */
vTaskStartScheduler();
}
else
{
/* 无法创建队列 */
}
/* 如果程序运行到了这里就表示出错了, 一般是内存不足 */
return 0;
}
发送任务的函数中,现在全局大数组pcBuffer中构造数据,然后把它的地址写入队列,代码如下:
static void vSenderTask( void *pvParameters )
{
BaseType_t xStatus;
static int cnt = 0;
char *buffer;
/* 无限循环 */
for( ;; )
{
sprintf(pcBuffer, "www.100ask.net Msg %d\r\n", cnt++);
buffer = pcBuffer; // buffer变量等于数组的地址, 下面要把这个地址写入队列
/* 写队列
* xQueue: 写哪个队列
* pvParameters: 写什么数据? 传入数据的地址, 会从这个地址把数据复制进队列
* 0: 如果队列满的话, 即刻返回
*/
xStatus = xQueueSendToBack( xQueue, &buffer, 0 ); /* 只需要写入4字节, 无需写入整个buffer */
if( xStatus != pdPASS )
{
printf( "Could not send to the queue.\r\n" );
}
}
}
接收任务的函数中,读取队列、得到buffer的地址、打印,代码如下:
static void vReceiverTask( void *pvParameters )
{
/* 读取队列时, 用这个变量来存放数据 */
char *buffer;
const TickType_t xTicksToWait = pdMS_TO_TICKS( 100UL );
BaseType_t xStatus;
/* 无限循环 */
for( ;; )
{
/* 读队列
* xQueue: 读哪个队列
* &xReceivedStructure: 读到的数据复制到这个地址
* xTicksToWait: 没有数据就阻塞一会
*/
xStatus = xQueueReceive( xQueue, &buffer, xTicksToWait); /* 得到buffer地址,只是4字节 */
if( xStatus == pdPASS )
{
/* 读到了数据 */
printf("Get: %s", buffer);
}
else
{
/* 没读到数据 */
printf( "Could not receive from the queue.\r\n" );
}
}
}
运行结果如下图所示:
本节代码为:FreeRTOS_11_queue_mailbox。
FreeRTOS的邮箱概念跟别的RTOS不一样,这里的邮箱称为"橱窗"也许更恰当:
这意味着,第一次调用时会因为无数据而阻塞,一旦曾经写入数据,以后读邮箱时总能成功。
main函数中创建了队列(队列长度为1)、创建了发送任务、接收任务:
代码如下:
/* 队列句柄, 创建队列时会设置这个变量 */
QueueHandle_t xQueue;
int main( void )
{
prvSetupHardware();
/* 创建队列: 长度为1,数据大小为4字节(存放一个char指针) */
xQueue = xQueueCreate( 1, sizeof(uint32_t) );
if( xQueue != NULL )
{
/* 创建1个任务用于写队列
* 任务函数会连续执行,构造buffer数据,把buffer地址写入队列
* 优先级为2
*/
xTaskCreate( vSenderTask, "Sender", 1000, NULL, 2, NULL );
/* 创建1个任务用于读队列
* 优先级为1
*/
xTaskCreate( vReceiverTask, "Receiver", 1000, NULL, 1, NULL );
/* 启动调度器 */
vTaskStartScheduler();
}
else
{
/* 无法创建队列 */
}
/* 如果程序运行到了这里就表示出错了, 一般是内存不足 */
return 0;
}
发送任务、接收任务的代码和执行流程如下:
运行结果如下图所示:
假设有2个输入设备:红外遥控器、旋转编码器,它们的驱动程序应该专注于“产生硬件数据”,不应该跟“业务有任何联系”。比如:红外遥控器驱动程序里,它只应该把键值记录下来、写入某个队列,它不应该把键值转换为游戏的控制键。在红外遥控器的驱动程序里,不应该有游戏相关的代码,这样,切换使用场景时,这个驱动程序还可以继续使用。
把红外遥控器的按键转换为游戏的控制键,应该在游戏的任务里实现。
要支持多个输入设备时,我们需要实现一个“InputTask”,它读取各个设备的队列,得到数据后再分别转换为游戏的控制键。
InputTask如何及时读取到多个队列的数据?要使用队列集。
队列集的本质也是队列,只不过里面存放的是“队列句柄”。使用过程如下:
函数原型如下:
QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength )
参数 | 说明 |
---|---|
uxQueueLength | 队列集长度,最多能存放多少个数据(队列句柄) |
返回值 | 非0:成功,返回句柄,以后使用句柄来操作队列 NULL:失败,因为内存不足 |
函数原型如下:
BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore,
QueueSetHandle_t xQueueSet );
参数 | 说明 |
---|---|
xQueueOrSemaphore | 队列句柄,这个队列要加入队列集 |
xQueueSet | 队列集句柄 |
返回值 | pdTRUE:成功 pdFALSE:失败 |
函数原型如下:
QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet,
TickType_t const xTicksToWait );
参数 | 说明 |
---|---|
xQueueSet | 队列集句柄 |
xTicksToWait | 如果队列集空则无法读出数据,可以让任务进入阻塞状态,xTicksToWait表示阻塞的最大时间(Tick Count)。如果被设为0,无法读出数据时函数会立刻返回;如果被设为portMAX_DELAY,则会一直阻塞直到有数据可写 |
返回值 | NULL:失败, 队列句柄:成功 |