spring boot+redis整合基础入门

文章目录

  • 前言
  • 准备
    • 依赖项
    • 配置文件
    • redis模板类注入设置序列化方式
  • 实施
    • 基础字符串操作、超时设置
    • Hash操作
      • hash的使用场景以及优缺点
    • 列表操作
      • 列表操作的应用场景以及优缺点
    • Set的基础操作
      • Set类型的业务场景以及优缺点
      • Demo地址
  • 总结

前言

最近项目中有用到redis进行一些数据的缓存,于是就想写一篇springboot集成redis的基础入门,也是给自己留一个可查看的地方,时刻能够提醒自己吧,后续应该会写一下进阶的redis的使用

准备

准备上redis的服务,以及搭建一个springboot项目框架,引入依赖

依赖项

		
        <dependency>
            <groupId>org.springframework.bootgroupId>
            <artifactId>spring-boot-starter-data-redisartifactId>
        dependency>

配置文件

spring:
  redis:
    host: localhost
    port: 6379
    lettuce:
      timeout: 5000 #(连接超时时间,单位为毫秒)
    database: 1

#   集群配置
#    spring:
#      redis:
#        password: 123456  #根据情况而定,看你的redis有没有密码设置
#        cluster:
#          nodes: 10.255.144.115:7001,10.255.144.115:7002,10.255.144.115:7003,10.255.144.115:7004,10.255.144.115:7005,10.255.144.115:7006
#          max-redirects: 3

# 连接池方式
#spring:
#  redis:
#    host: 10.255.144.111
#    port: 6379
#    password: 123456
#    database: 0
#    lettuce:
#      pool:
#        max-idle: 16
#        max-active: 32
#        min-idle: 8

redis模板类注入设置序列化方式

    @Bean
    public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory connectionFactory) {
        // 我们为了自己开发方便,一般直接使用 
        RedisTemplate<String, Object> template = new RedisTemplate<String, Object>();
        template.setConnectionFactory(connectionFactory);
        // Json序列化配置
        Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);
        ObjectMapper om = new ObjectMapper();
        om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
        jackson2JsonRedisSerializer.setObjectMapper(om);
        // String 的序列化
        StringRedisSerializer stringRedisSerializer = new StringRedisSerializer();
        // key采用String的序列化方式
        template.setKeySerializer(stringRedisSerializer);
        // hash的key也采用String的序列化方式
        template.setHashKeySerializer(stringRedisSerializer);
        // value序列化方式采用jackson
        template.setValueSerializer(jackson2JsonRedisSerializer);
        // hash的value序列化方式采用jackson
        template.setHashValueSerializer(jackson2JsonRedisSerializer);
        template.afterPropertiesSet();
        return template;
    }

实施

基础字符串操作、超时设置

  //String 插入
    @Test
    void contextLoads() {
        String key = "zszxz";
        String value = "知识追寻者";
        redisTemplate.opsForValue().set(key, value);
    }
    // string 读取
    @Test
    public void testForValue(){
        String key = "zszxz";
        Object value = redisTemplate.opsForValue().get(key);
        // 知识追寻者
        System.out.println(value);
    }
    // string key过期时间入库
    @Test
    public void testForValueTimeOut(){
        String key = "today";
        String value = "周六";
        long time = 60;
        redisTemplate.opsForValue().set(key, value, time, TimeUnit.SECONDS);
    }
    // 测试 key 是否存在
    @Test
    public void testKeyIsExist(){
        String key = "zszxz";
        Boolean exist = redisTemplate.hasKey(key);
        // true
        System.out.println(exist);
    }
    // 设置 key 过期时间
    @Test
    public void testIsTimeOut(){
        String key = "zszxz";
        long time = 60;
        redisTemplate.expire(key, time, TimeUnit.SECONDS);
    }

    // 获取key过期时间
    @Test
    public void testGetKeyTimeOut(){
        String key = "zszxz";
        Long expire = redisTemplate.getExpire(key, TimeUnit.SECONDS);
        // 7
        System.out.println(expire);
    }

    // 删除key
    @Test
    public void testDeleteKey(){
        String key = "zszxz";
        redisTemplate.delete(key);
    }

Hash操作

   // 放入一个 hash ( key value )
    @Test
    public void testPushHash(){
        String key = "zszxz";
        String item = "name";
        String value = "知识追寻者";
        redisTemplate.opsForHash().put(key, item, value);
    }

    // 向hash中存放一个map
    @Test
    public void testPushMap(){
        String key = "feature";
        Map<String, Object> map = new HashMap<>();
        map.put("name", "知识追寻者");
        map.put("age", "18");
        redisTemplate.opsForHash().putAll(key, map);
    }

    // 获取一个hash 的 所有key-value
    @Test
    public void testGekHashAllData(){
        String key = "feature";
        Map<Object, Object> entries = redisTemplate.opsForHash().entries(key);
        // {name=知识追寻者, age=18}
        System.out.println(entries);
    }

    // 获取一个hash 的 指定key 的value
    @Test
    public void testGetHashByKey(){
        String key = "feature";
        String item = "name";
        Object value = redisTemplate.opsForHash().get(key, item);
        // 知识追寻者
        System.out.println(value);
    }

    // 删除指定 hash key 的value
    @Test
    public void testDeleteHashByKey(){
        String key = "zszxz";
        String item = "name";
        redisTemplate.opsForHash().delete(key, item);
    }

    // 是否存在 指定 hash 的key
    @Test
    public void testIsHashKeyExist(){
        String key = "zszxz";
        String item = "name";
        Boolean exist = redisTemplate.opsForHash().hasKey(key, item);
        // false
        System.out.println(exist);
    }

hash的使用场景以及优缺点

Redis 中的 Hash 数据类型适用于以下业务场景:

  1. 对象存储:当需要存储和访问复杂对象时,可以将对象的属性作为 Hash 的字段,字段值作为对应属性的值。这样可以将一个完整对象存储在一个 Hash 中,方便操作和管理。

  2. 缓存场景:在缓存中存储一些结构化的数据,例如用户信息、配置项等。通过 Hash 可以有效地组织和管理这些数据,减少缓存键的数量,提高查询效率。

  3. 统计和计数器:使用 Hash 可以方便地存储和更新统计数据和计数器,例如网站的访问次数、文章的点赞数等。通过 Hash 提供的自增和自减操作,可以高效地实现计数功能。

  4. 表示关系:在需要表示关系的场景中,可以将关联关系存储为 Hash 的字段,字段值表示关系的描述或其他附加信息。这样可以清晰地表示不同实体之间的关系。

Hash 的优点包括:

  • 结构清晰:Hash 存储的数据结构清晰,字段名和字段值之间有明确的映射关系,方便理解和操作。
  • 灵活性高:Hash 可以存储不同类型的字段和值,支持各种复杂的数据结构和对象存储需求。
  • 查询效率高:通过字段名直接访问字段值,查询操作的时间复杂度为 O(1)。

Hash 的缺点包括:

  • 存储空间占用相对较高:由于每个 Hash 对象都需要存储字段名和字段值的映射关系,因此占用的存储空间较多。
  • 不支持单字段更新:当需要更新 Hash 中的某一个字段时,需要先获取整个 Hash 对象并进行修改,然后再写回数据库。
  • 不适用于大规模数据存储:当 Hash 中的字段数量很多时,操作和维护都会变得复杂,不适合存储大规模的数据。

列表操作

// 列表右推入
@Test
public void testRightPush(){
    String key = "zszxz";
    String value = "知识追寻者";
    redisTemplate.opsForList().rightPush(key, value);
}

// 列表左推入
@Test
public void testLeftPush(){
    String key = "zszxz";
    String value = "晴雨天";
    redisTemplate.opsForList().leftPush(key, value);
}
// 列表左弹出
@Test
public void testLeftPop(){
    String key = "zszxz";
    Object value = redisTemplate.opsForList().leftPop(key);
    // 晴雨天
    System.out.println(value);

}
// 列表右弹出
@Test
public void testRightPop(){
    String key = "zszxz";
    Object value = redisTemplate.opsForList().rightPop(key);
    // 知识追寻者
    System.out.println(value);
}

// 将list右推入列表
@Test
public void testListRightPushAll(){
    List<Object> list = new ArrayList<>();
    list.add(12);
    list.add(22);
    list.add(32);
    String key = "number";
    redisTemplate.opsForList().rightPushAll(key, list);

    //根据key获取key对应的集合信息
    List<Object> listValue = redisTemplate.opsForList().range(key, 0, -1);
    for (Object o:listValue)
        System.out.println(o);
}

// 修改列表指定索引的值
@Test
public void testUpdateByIndex(){
    String key = "number";
    int index = 0;
    int value = 666;
    redisTemplate.opsForList().set(key, index, value);
}
// 获取列表指定索引的值
@Test
public void testByIndex(){
    String key = "number";
    int index = 0;
    Object value = redisTemplate.opsForList().index(key, index);
    // 666
    System.out.println(value);
}

列表操作的应用场景以及优缺点

Redis 中的列表数据类型适用于以下业务场景:

  1. 消息队列:通过列表实现消息队列,将任务或消息存储在列表尾部,消费者从列表头部获取任务或消息并进行处理。由于 Redis 提供了多种阻塞式读取列表的方法,因此可以实现高效的异步任务处理和发布订阅功能。

  2. 实时排名:通过列表存储用户访问次数、商品销量等排名信息,使用 Redis 提供的自增和排序操作可以快速地更新和查询排名数据。

  3. 时间轴:通过列表存储和查询时间轴上的事件数据,例如聊天室中的历史消息、微博中的动态等。通过 Redis 提供的切片操作,可以实现按照时间范围查询数据和分页显示等功能。

  4. 历史记录:通过列表存储用户的搜索记录、浏览记录等历史数据,并可以通过 Redis 提供的去重、分页等操作进行查询和展示。

列表的优点包括:

  • 可以方便地支持队列、栈等多种数据结构。
  • 可以支持快速的随机访问和遍历操作。
  • 无须预先定义长度,支持动态增长和缩容。
  • 支持多种操作,如插入、删除、修剪、合并、排序、查询等。

列表的缺点包括:

  • 在插入和删除操作频繁的场景中,列表的性能可能会有影响。
  • 在查询和遍历大型列表时,需要消耗大量内存和网络资源。
  • 列表数据无法持久化到磁盘中,重启后数据将被清空。

Set的基础操作

    // set 中存储值
    @Test
    public void testSetPush(){
        String key = "zszxz";
        String value1 = "晴雨天";
        String value2 = "公众号:知识追寻者";
        redisTemplate.opsForSet().add(key, value1, value2);
    }

    // 从 set 中取值
    @Test
    public void testGetValue(){
        String key = "zszxz";
        Set<Object> members = redisTemplate.opsForSet().members(key);
        // [晴雨天, 公众号:知识追寻者]
        System.out.println(members);
    }

    // 判定 set 中是否存在 key-value
    @Test
    public void testSetIsExist(){
        String key = "zszxz";
        String value = "晴雨天";
        Boolean member = redisTemplate.opsForSet().isMember(key, value);
        // true
        System.out.println(member);
    }

Set类型的业务场景以及优缺点

Redis 中的集合数据类型(Set)适用于以下业务场景:

  1. 标签和分类:使用集合可以方便地管理标签或分类信息。每个元素表示一个标签或分类,可以进行添加、删除、查询等操作,同时还可以计算交集、并集、差集等集合运算。

  2. 好友关系:通过集合可以表示用户之间的好友关系。每个集合表示一个用户的好友列表,可以使用集合操作来实现添加好友、查找共同好友、推荐好友等功能。

  3. 去重:集合中的元素是唯一的,因此可以用于对数据进行去重操作。将需要去重的数据存储在集合中,可以方便地去除重复数据并保留唯一值。

  4. 兴趣爱好:使用集合可以表示用户的兴趣爱好。每个集合表示一个用户的兴趣集合,可以进行集合运算来计算用户之间的相似度或偏好匹配。

集合的优点包括:

  • 支持快速的元素查找和判断是否存在。
  • 提供了多种集合操作,如并集、交集、差集等,方便对多个集合进行操作和计算。
  • 集合中的元素是唯一的,可以方便地进行去重操作。
  • 集合操作的时间复杂度为 O(n),适用于大规模数据的处理。

集合的缺点包括:

  • 不支持按照特定顺序排序元素。
  • 集合操作的性能随着元素数量增加而降低,当集合中元素过多时,操作可能会变慢。
  • 集合数据无法持久化到磁盘中,重启后数据将被清空。

可以使用RedisDesktopManager查看redis中的存储情况
spring boot+redis整合基础入门_第1张图片

Demo地址

总结

对于redis的简单使用springboot已经帮助我们做了集成,给我们封装了很多的api,只要借助提供的api就可以快速入门,但是到入土还需要一些时间。

你可能感兴趣的:(spring,boot,redis,java)