⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️
作者:秋无之地简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。
欢迎小伙伴们点赞、收藏⭐️、留言、关注,关注必回关
上一篇文章已经跟大家介绍过《Pandas模块:Python科学计算神器之一》,相信大家对Pandas模块都有一个基本的认识。下面我讲一下:用户画像的设计准则以及美团外卖用户画像的设计案例。
举个例子:
你进入到一家卖羊肉串的餐饮公司,老板说现在竞争越来越激烈,要想做得好就要明白顾客喜欢什么。于是上班第一天,老板问你:“你能不能分析下用户数据,给咱们公司的业务做个赋能啊?”
你可以说:“老板啊,用户画像建模是个系统的工程,我们要解决三个问题。”
第一呢,就是用户从哪里来:这里我们需要统一标识用户 ID,方便我们对用户后续行为进行跟踪。我们要了解这些用户从哪里来,他们是为了聚餐,还是自己吃宵夜,这些场景我们都要做统计分析。
第二呢,这些用户是谁:我们需要对这些用户进行标签化,方便我们对用户行为进行理解。
第三呢,就是用户要到哪里去:我们要将这些用户画像与我们的业务相关联,提升我们的转化率,或者降低我们的流失率。
听到这,老板给你竖起了大拇指,说:“不错,都需要什么资源,随时找我就行。”
刚才说的这三个步骤,下面进行详细说明。
1、为什么要设计唯一标识?
用户唯一标识是整个用户画像的核心。我们以一个 App 为例,它把“从用户开始使用 APP 到下单到售后整个所有的用户行为”进行串联,这样就可以更好地去跟踪和分析一个用户的特征。
设计唯一标识可以从这些项中选择:用户名、注册手机号、联系人手机号、邮箱、设备号、CookieID 等。
2、给用户打标签
你可能会想,标签有很多,且不同的产品,标签的选择范围也不同,这么多的标签,怎样划分才能既方便记忆,又能保证用户画像的全面性呢?
这里我总结了八个字,叫“用户消费行为分析”。我们可以从这 4 个维度来进行标签划分。
可以说,用户画像是现实世界中的用户的数学建模,我们正是将海量数据进行标签化,来得到精准的用户画像,从而为企业更精准地解决问题。
3、当你有了用户画像,可以为企业带来什么业务价值呢?
我们可以从用户生命周期的三个阶段来划分业务价值,包括:获客、粘客和留客。
如果按照数据流处理的阶段来划分用户画像建模的过程,可以分为数据层、算法层和业务层。你会发现在不同的层,都需要打上不同的标签。
所以这个标签化的流程,就是通过数据层的“事实标签”,在算法层进行计算,打上“模型标签”的分类结果,最后指导业务层,得出“预测标签”。
1、设计唯一标识
刚才讲的是用户画像的三个阶段,以及每个阶段的准则。下面,我们来使用这些准则做个练习。
如果你是美团外卖的数据分析师,你该如何制定用户标识 ID,制定用户画像,以及基于用户画像可以做哪些业务关联?
首先,我们先回顾下美团外卖的产品背景。美团已经和大众点评进行了合并,因此在大众点评和美团外卖上都可以进行外卖下单。另外美团外卖针对的是高频 O2O 的场景,美团外卖是美团的核心产品,基本上有一半的市值都是由外卖撑起来的。
基于用户画像实施的三个阶段,我们首先需要统一用户的唯一标识,那么究竟哪个字段可以作为用户标识呢?我们先看下美团和大众点评都是通过哪些方式登录的。
我们看到,美团采用的是手机号、微信、微博、美团账号的登录方式。大众点评采用的是手机号、微信、QQ、微博的登录方式。这里面两个 APP 共同的登录方式都是手机号、微信和微博。
那么究竟哪个可以作为用户的唯一标识呢?当然主要是以用户的注册手机号为标准。这样美团和大众点评的账号体系就可以相通。
当然,大家知道在集团内部,各部门之间的协作,尤其是用户数据打通是非常困难的,所以这里建议,如果希望大数据对各个部门都能赋能,一定要在集团的战略高度上,尽早就在最开始的顶层架构上,将用户标识进行统一,这样在后续过程中才能实现用户数据的打通。
2、给用户打标签
有了用户,用户画像都可以统计到哪些标签。我们按照“用户消费行为分析”的准则来进行设计。
当你有了“用户消费行为分析”的标签之后,你就可以更好地理解业务了。
3、当你有了用户画像,可以为企业带来什么业务价值呢?
比如一个经常买沙拉的人,一般很少吃夜宵。同样,一个经常吃夜宵的人,吃小龙虾的概率可能远高于其他人。这些结果都是通过数据挖掘中的关联分析得出的。
有了这些数据,我们就可以预测用户的行为。
比如一个用户购买了“月子餐”后,更有可能购买婴儿水,同样婴儿相关的产品比如婴儿湿巾等的购买概率也会增大。
具体在业务层上,我们都可以基于标签产生哪些业务价值呢?
正所谓:大道至简,聪明人把复杂的问题简单化。
上面我们讲到的“用户消费行为标签”都是基于一般情况考虑的,除此之外,用户的行为也会随着营销的节奏产生异常值,比如双十一的时候,如果商家都在促销就会产生突发的大量订单。因此在做用户画像的时候,还要考虑到异常值的处理。
总之,数据量是庞大的,会存在各种各样的使用情况。光是分析 EB 级别的大数据,我们就要花很长的时间。
但我们的最终目的不是处理这些数据,而是理解、使用这些数据挖掘的结果。对数据的标签化能让我们快速理解一个用户,一个商品,乃至一个视频内容的特征,从而方便我们去理解和使用数据。
对数据的标签化其实考验的是我们的抽象能力,在日常工作中,我们也要锻炼自己的抽象能力,它可以让我们很快地将一个繁杂的事物简单化,不仅方便理解,还有益后续的使用。
下图是用户画像的知识清单,也是对本文内容的一个总结。
本文章版权归作者所有,未经作者允许禁止任何转载、采集,作者保留一切追究的权利。