- RDD 行动算子
阿强77
RDDSpark
在ApacheSpark中,RDD(弹性分布式数据集)是核心数据结构之一。行动算子会触发实际的计算并返回结果或执行某些操作。以下是Scala中常见的RDD行动算子:1.collect()将RDD中的所有数据收集到驱动程序中,并返回一个数组。注意:如果数据集很大,可能会导致内存不足。valdata:Array[T]=rdd.collect()2.count()返回RDD中元素的总数。valcount
- 讲一下Spark的shuffle过程
冰火同学
Sparkspark大数据分布式
首先Spark的shuffle是Spark分布式集群计算的核心。Spark的shuffle可以从shuffle的阶段划分,shuffle数据存储,shuffle的数据拉取三个方面进行讲解。首先shuffle的阶段分为shuffle的shufflewrite阶段和shuffleread阶段。shufflewrite的触发条件就是上游的Stage任务shuffleMapTask完成计算后,会哪找下游S
- Spark常见面试题目(1)
冰火同学
Sparkspark面试大数据
Spark有哪几种部署的方式,谈谈方式都有哪些特点第一种是local本地部署,通常就是一台机器用于测试。第二种是standalone部署模式,就是一个master节点,控制几个work节点,其实一台机器的standalone模式就是它自己即是master,又是work。第三种是yarn模式,就是吧spark交给yarn进行资源调度管理。第四种就是messon模式,这种在国内很少见到。Spark主备
- Spark数据倾斜的问题
冰火同学
Sparkspark大数据分布式
Spark数据倾斜业务背景Spark数据倾斜表现Spark的数据倾斜,包括SparkStreaming和SparkSQL,表现主要有下面几种:1、Excutorlost,OOM,Shuffle过程出错2、DriverOOM3、单个Excutor执行器一直在运行,整体任务卡在某个阶段不能结束4、正常运行的任务突然失败数据倾斜产生的原因以Spark使用场景为例,我们再做数据计算的时候会涉及类似coun
- PySpark实现导出两个包含多个Parquet数据文件的S3目录里的对应值的差异值分析
weixin_30777913
pythonspark数据分析云计算
编写PySpark代码实现从一个包含多个Parquet数据文件的AmazonS3目录的dataframe数据里取两个维度字段,一个度量字段的数据,根据这两个维度字段的数据分组统计,计算度量字段的数据的分组总计值,得到一个包含两个维度字段和度量字段的分组总计值字段的dataframe,再从另一个包含多个Parquet数据文件的S3目录的dataframe数据里取两个维度字段,一个度量字段的数据组成一
- Hadoop、Spark和 Hive 的详细关系
夜行容忍
hadoopsparkhive
Hadoop、Spark和Hive的详细关系1.ApacheHadoopHadoop是一个开源框架,用于分布式存储和处理大规模数据集。核心组件:HDFS(HadoopDistributedFileSystem):分布式文件系统,提供高吞吐量的数据访问。YARN(YetAnotherResourceNegotiator):集群资源管理和作业调度系统。MapReduce:基于YARN的并行处理框架,用
- 大数据技术生态圈:Hadoop、Hive、Spark的区别和关系
雨中徜徉的思绪漫溢
大数据hadoophive
大数据技术生态圈:Hadoop、Hive、Spark的区别和关系在大数据领域中,Hadoop、Hive和Spark是三个常用的开源技术,它们在大数据处理和分析方面发挥着重要作用。虽然它们都是为了处理大规模数据集而设计的,但它们在功能和使用方式上存在一些区别。本文将详细介绍Hadoop、Hive和Spark的区别和关系,并提供相应的源代码示例。Hadoop:Hadoop是一个用于分布式存储和处理大规
- 大数据面试之路 (一) 数据倾斜
愿与狸花过一生
大数据面试职场和发展
记录大数据面试历程数据倾斜大数据岗位,数据倾斜面试必问的一个问题。一、数据倾斜的表现与原因表现某个或某几个Task执行时间过长,其他Task快速完成。Spark/MapReduce作业卡在某个阶段(如reduce阶段),日志显示少数Task处理大量数据。资源利用率不均衡(如CPU、内存集中在某些节点)。常见场景Key分布不均:如某些Key对应的数据量极大(如用户ID为空的记录、热点事件)。数据分区
- scala针对复杂数据源导入与分隔符乱码处理
Tometor
scalajavascript后端java数据结构
复杂的数据源,和奇怪的数据格式是生产中经常遇到的难题,本文将探讨如何解析分隔符混乱的数据,和如何导入各种数据源文件一、非标准分隔符处理当数据源的分隔符混乱或不统一时(如,、|、\t混合使用),可采用以下方法:1.1动态检测分隔符//示例:自动检测前100行的常用分隔符valsampleLines=spark.read.text("data.csv").limit(100).collect()val
- Spark-TTS:基于大模型的文本语音合成工具
CITY_OF_MO_GY
魅力语音语音识别深度学习人工智能
GitHub:https://github.com/SparkAudio/Spark-TTSSpark-TTS是一个先进的文本到语音系统,它利用大型语言模型(LLM)的强大功能进行高度准确和自然的语音合成;旨在高效、灵活、强大地用于研究和生产用途。一、介绍SparkTTS完全基于Qwen2.5构建,无需额外的生成模型,它不依赖于单独的模型来生成声学特征,而是直接从LLM预测的代码中重建音频。这种方
- 数据湖架构与实时数仓实践:Hudi、Iceberg、Kafka + Flink + Spark
晴天彩虹雨
架构kafkaflink数据仓库
1.引言:数据湖与数据仓库的融合趋势在大数据时代,传统的数据仓库(DataWarehouse,DW)因其强一致性和高效查询能力,一直是企业数据分析的核心。然而,随着数据量和数据类型的爆炸式增长,传统数据仓库的存储成本和数据管理难度逐渐增加。为了解决这些问题,数据湖(DataLake)概念应运而生。数据湖能够存储原始数据,支持半结构化和非结构化数据,提供更灵活的计算框架,但其缺乏事务管理和数据一致性
- 大数据实战:Spark + Hive 逐笔计算用户盈亏
WuJiWeb3
区块链链上数据分析从0到1搭建区块链大数据平台sparkhive大数据web3区块链hadoop
简介本文将通过使用Spark+Hive实现逐笔计算区块链上用户交易数据的盈亏需求。由于我们是进行离线计算,所以我们的数据源是Hive表数据,Sink表也是Hive表,即Spark读取Hive表数据进行批计算之后写回到Hive表并供后续使用。通过本文你将会学到:如何使用SparkSQLAPI读取Hive数据源如何通过读取配置文件进行传参执行SQL如何将SparkSQL转换为JavaRDD进行处理如何
- 分布式计算入门(PySpark处理NASA服务器日志)
闲人编程
Python数据分析实战精要服务器运维统计分析日志NASA服务器分布式计算PySpark
目录分布式计算入门(PySpark处理NASA服务器日志)1.引言2.分布式计算概述2.1分布式计算的基本概念2.2ApacheSpark与PySpark3.NASA服务器日志数据集介绍3.1数据背景3.2数据格式与挑战4.PySpark基础与分布式日志处理4.1PySpark基本架构4.2日志数据加载与解析4.3数据清洗与内存优化4.4GPU加速与SparkRAPIDS5.实验环境与依赖库6.数
- Dask vs. Apache Spark: 大数据处理的利器对比与应用实例
步入烟尘
Python超入门指南全册apachespark大数据
本文已收录于《Python超入门指南全册》本专栏专门针对零基础和需要进阶提升的同学所准备的一套完整教学,从基础到精通不断进阶深入,后续还有实战项目,轻松应对面试,专栏订阅地址:https://blog.csdn.net/mrdeam/category_12647587.html优点:订阅限时19.9付费专栏,私信博主还可进入全栈VIP答疑群,作者优先解答机会(代码指导、远程服务),群里大佬众多可以
- spark yum配置
Amu_Yalo
spark
yum配置Yum是一个linux工具,用来从网络上下载安装软件到CentOS操作系统中。先要确保虚拟机的网络是通畅的。(1)查看源yum中的源是指它从哪里去下载软件。把yum想象成你自己开的一家商场,那么yum的源就是你的供货商。通过yumrepolist命令可以去查看当前的供货商信息。(如果显示源信息是mirrorlist.centos.org(默认源),那就不能使用了。这个源已经失效了,就是你
- Hadoop、Spark、Flink Shuffle对比
逆袭的小学生
hadoopsparkflink
一、Hadoop的shuffle前置知识:Map任务的数量由Hadoop框架自动计算,等于分片数量,等于输入文件总大小/分片大小,分片大小为HDFS默认值128M,可调Reduce任务数由用户在作业提交时通过Job.setNumReduceTasks(int)设置数据分配到Reduce任务的时间点,在Map任务执行期间,通过Partitioner(分区器)确定每个键值对的目标Reduce分区。默认
- Scala_Spark_RDD_parttwo
Gadaite
Spark基础scalasparkbigdata
只做记录不展示结果(部分结果放在了代码的注释中):packagespark_rddimportorg.apache.spark.sql.SparkSessionobjectrdd_fiveextendsApp{overridedefmain(args:Array[String]):Unit={/***key-valueRDD*pairRDD*2021-10-31*/valp="-----"*20v
- Spark scala api(一)RDD编程
weixin_42521881
spark学习
基础初始化sparkvalconf=newSparkConf().setAppName("wordcount")valsc=newSparkContext(conf)转化操作和行动操作的区别在于spark计算rdd的方式不同,只有在第一次在一个行动操作中用到转化操作中的rdd时,才会真正计算这些rdd。创建rdd//驱动器程序对一个集合进行并行化vallines=sc.parallelize(Li
- Scala 中生成一个RDD的方法
闯闯桑
scala开发语言大数据
在Scala中,生成RDD(弹性分布式数据集)的主要方法是通过SparkContext(或SparkSession)提供的API。以下是生成RDD的常见方法:1.从本地集合创建RDD使用parallelize方法将本地集合(如Seq、List、Array等)转换为RDD。valspark=SparkSession.builder.appName("RDDExample").getOrCreate(
- 大数据Flink(六十四):Flink运行时架构介绍_flink中涉及到的大数据组件
2401_84181942
程序员大数据flink架构
于是人们提出了“不共享任何东西”(share-nothing)的分布式架构。从以Greenplum为代表的MPP(MassivelyParallelProcessing,大规模并行处理)架构,到Hadoop、Spark为代表的批处理架构,再到Storm、Flink为代表的流处理架构,都是以分布式作为系统架构的基本形态的。我们已经知道,Flink就是一个分布式的并行流处理系统。简单来说,它会由多个进
- 大数据运维实战指南:零基础入门与核心技术解析(第一篇)
emmm形成中
大数据运维
大数据运维实战指南:零基础入门与核心技术解析(第一篇)系列文章目录第一篇:大数据运维概述与核心技能体系第二篇:Hadoop生态体系与集群部署实战第三篇:分布式存储系统运维与优化第四篇:资源调度框架YARN/K8s深度解析第五篇:实时计算框架Flink/Spark运维指南第六篇:大数据监控体系与自动化运维第七篇:云原生时代的大数据运维实践第八篇:数据安全与合规性管理第九篇:性能调优与故障排查案例集第
- spark集群,kafka集群和zookeeper的docker集群快速搭建
醉与浮
toolsdockersparkkafka
准备操作安装docker(宿主机)yuminstalldocker(宿主机时centos用yum管理包)systemctldaemon-reload(重加载deamon服务,是docker的核心)systemctlrestartdocker.service(重启docker服务)docker常用命令dockerps-a查看所有容器dockersearchUbuntu寻找Ubuntu的镜像docke
- 大数据计算框架深入:Spark SQL、DataFrame、RDD 性能优化
晴天彩虹雨
大数据sparkbigdata
1.引言ApacheSpark是当前最流行的大数据计算框架之一,其中SparkSQL、DataFrame和RDD(ResilientDistributedDataset)是数据处理的三大核心API。如何优化Spark作业的性能,是大数据开发者必须掌握的关键技能。本文将深入探讨SparkSQL、DataFrame和RDD的性能优化方法,并结合实际案例进行分析。2.SparkSQL性能优化(1)使用P
- Spark单机伪分布式环境搭建、完全分布式环境搭建、Spark-on-yarn模式搭建
遇安.YuAn
Spark大数据平台组件搭建hadoop大数据Sparkscala环境搭建
搭建Spark需要先配置好scala环境。三种Spark环境搭建互不关联,都是从零开始搭建。如果将文章中的配置文件修改内容复制粘贴的话,所有配置文件添加的内容后面的注释记得删除,可能会报错。保险一点删除最好。Scala环境搭建上传安装包解压并重命名rz上传如果没有安装rz可以使用命令安装:yuminstall-ylrzsz这里我将scala解压到/opt/module目录下:tar-zxvf/op
- (一)spark是什么?
一智哇
大数据框架学习sparkbigdata大数据
1.spark是什么?spark是一个用来实现快速,通用的集群计算平台spark适用于各种各样原先需要多种不同的分布式平台的场景,包括批处理,迭代算法,交互式查询,流处理。通过在一个统一的框架下支持这些不同的计算,spark使我们可以简单而低耗地把各种处理流程整合在一起。2.spark的用途(1):数据科学任务具备SQL、统计、预测建模(机器学习)等方面的经验,以及一定的python,matlab
- spark hdfs 常用命令
毛球饲养员
sparksparkhdfs
目录lsrmgettext以下按照使用频率和使用先后顺序排序(纯个人习惯)ls列出hdfs文件系统路径下的目录和文件hdfsdfs-ls列出hdfs文件系统路径下所有的目录和文件hdfsdfs-ls-Rrmhadoopfs-rm...hadoopfs-rm-r...每次可以删除多个文件或目录getlocalfile不能和hdfsfile名字不能相同,否则会提示文件已存在,没有重名的文件会复制到本地
- 常用spark命令
会拉小提琴的左脚
大数据sparkhadoophdfs
--spark启动localhost$spark-sql--masteryarn启动主节点yarn模式--查看hdfs文件hdfsdfs-ls/spark/myDatabase.db查看我们建的表其实是是建立在hdfs里面hdfsdfs-du-h/spark/myDatabase.db查看我们的文件大小也就是我们的表的大小要接近最小的block大小如64M或者128M-h是以我们合适的单位去展示大
- Spark详解二
卢子墨
Spark原理实战总结spark
八、Spark部署模式1、Local本地模式:运行于本地spark-shell--masterlocal[2](local[2]是说,执行Application需要用到CPU的2个核)2、Standalone独立模式:Spark自带的一种集群模式Spark自己管理集群资源,此时只需要将Hadoop的HDFS启动Master节点有master,Slave节点上有worker启动./bin/spark
- Spark基本命令
chenworeng5605
大数据scalashell
一、spark所在目录cdusr/local/spark二、启动spark/usr/local/spark/sbin/start-all.sh启动Hadoop以及Spark:bash./starths.sh浏览器查看:172.16.31.17:8080停止Hadoop以及Sparkbash./stophs.sh三、基础使用参考链接:https://www.cnblogs.com/dasn/arti
- spark vi基本使用
忧伤火锅麻辣烫
笔记
打开文件与创建文件是Linux的内置命令,以命令的方式来运行。命令格式:vi/路径/文件名注意以下两种情况:1.如果这个文件不存在,此时就是新建文件,编辑器的左下角会提示:newfile2.如果文件已存在,此时就打开这个文件,进入命令模式。把文本内容添加到一个全新的文件的快捷方式:echo1>>1.txt三种模式vi编辑器有三种工作模式,分别为:命令模式,输入模式,底线模式。命令模式:所敲按键编辑
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&