- 在 GPU 上实现全规模文件系统加速
gpu加速器
摘要现代高性能计算和人工智能计算解决方案经常使用GPU作为其主要计算能力来源。这就为GPU应用程序的存储操作造成了严重的不平衡,因为每一个此类存储操作都必须向CPU发出信号并由CPU处理。在GPU4FS中,我们针对这种不平衡提出了一个彻底的解决方案:将文件系统的实现转移到应用程序中,并在GPU上运行完整的文件系统。这需要对从实际存储布局到文件系统接口的整个文件系统栈进行多次更改。此外,这种方法还能
- 前端面试题(超全!)
技术猿禁
前端
一、HTML考题(8题)1.前端页面有哪三层构成,分别是什么?作用是什么?//前端三层构成:有三层,分别是:html、css、js,那html为dom,css是样式,js是交互//浏览器进程模型:(1)浏览器是一个大进程,中包含多个进程,进程中也有很多线程。(2)那么就拿html和css来说,是靠GUI来渲染的,那么如果要避免回流重绘,需要靠GPU进程完成,这样性能会好。(3)js是靠渲染进程的渲
- Xmodel-VLM: A Simple Baseline for Multimodal Vision Language Model
UnknownBody
LLMDailyMultimodal语言模型人工智能自然语言处理
本文是LLM系列文章,针对《Xmodel-VLM:ASimpleBaselineforMultimodalVisionLanguageModel》的翻译。XmodelVLM:一种多模态视觉语言模型的简单基线摘要1引言2相关工作3模型架构4实验5消融研究6结论摘要我们介绍了XmodelVLM,一种前沿的多模态视觉语言模型。它是为在消费级GPU服务器上高效部署而设计的。我们的工作直接面对一个关键的行业
- NVIDIA-vGPU介绍和下载地址以及安装流程
萌萌哒240
环境配置服务器linux运维
这里以NVIDIA-Linux-x86_64-470.63-vgpu-kvm.run文件进行介绍和下载安装NVIDIA-Linux-x86_64-470.63-vgpu-kvm介绍NVIDIA-Linux-x86_64-470.63-vgpu-kvm是NVIDIA针对其GPU硬件开发的一种虚拟化解决方案的驱动程序,它允许多个虚拟机(VM)共享物理GPU的计算能力,从而实现高效且独立的图形处理。该驱
- 骁龙 8 至尊版:AI 手机的变革先锋
倔强的小石头_
人工智能大数据
目录引言性能跃升:AI手机的强劲根基(一)CPU性能革命(二)GPU图形进化(三)NPU智能核心AI体验革新:多维度的智能进化(一)个性化多模态AI助手(二)影像体验的AI重塑(三)游戏体验的AI赋能生态合作与未来展望引言在当今科技飞速发展的时代,智能手机领域正经历着深刻的变革。而骁龙8至尊版的出现,犹如一颗璀璨的明星,在手机芯片领域中闪耀着独特的光芒,其重要性和影响力不容小觑。它不仅仅是一款芯片
- NVIDIA A100 SXM4与NVIDIA A100 PCIe版本区别深度对比:架构、性能与场景解析
ASI人工智能
人工智能架构机器人AIGCgpt文心一言palm
NVIDIAA100SXM4与PCIe版本深度对比:架构、性能与场景解析作为NVIDIAAmpere架构的旗舰级数据中心GPU,A100系列凭借强大的计算能力和显存带宽,已成为人工智能训练、高性能计算(HPC)等领域的核心硬件。然而,A100家族中存在两种不同形态的版本——SXM4与PCIe,二者在物理设计、性能上限和适用场景上存在显著差异。本文将深入解析两者的技术特性,为硬件选型提供决策依据。文
- 手把手教你本地部署DeepSeek大模型!从环境搭建到数据训练全流程实战
菜鸟养成_记
人工智能
前言:为什么选择DeepSeek本地部署?在AI技术爆炸式发展的今天,企业/开发者对数据隐私和定制化需求日益增长。DeepSeek作为国产优秀大模型,支持本地化部署和私有数据训练,可完美解决:数据不出内网:医疗/金融等敏感行业刚需垂直领域定制:用自有数据打造专属AI助手算力自由掌控:灵活调配GPU资源,成本可控本文将带你从零完成DeepSeek的本地部署,并通过真实业务数据训练专属模型,全程附代码
- 英伟达(NVIDIA)芯片全解析:专业分类、应用场景与真实案例
嵌入式Jerry
AI分类人工智能数据挖掘嵌入式硬件linux数据分析算法
引言你知道吗?你每天使用的智能手机、AI语音助手、自动驾驶汽车,甚至是电影特效背后,都有英伟达(NVIDIA)的芯片在默默工作。NVIDIA不仅仅是“游戏显卡”的代名词,它的GPU和AI计算平台已经广泛应用于人工智能(AI)、自动驾驶、医疗影像、工业自动化、智能家居等领域。那么,NVIDIA的芯片有哪些分类?它们分别用在哪里?普通人又能从哪些场景感受到它的存在?今天,我们就来用最通俗易懂的方式,带
- deepseek-r1系列模型私有化部署分别需要的最低硬件配置
Sophie'sCookingLab
大模型deepseek
DeepSeek-R1系列模型部署所需的最低硬件配置如下:DeepSeek-R1-1.5BCPU:最低4核(推荐多核处理器)内存:8GB+硬盘:3GB+存储空间(模型文件约1.5-2GB)显卡:非必需(纯CPU推理),若GPU加速可选4GB+显存(如GTX1650)适用场景:低资源设备部署(如树莓派、旧款笔记本)、实时文本生成(聊天机器人、简单问答)、嵌入式系统或物联网
- 前端性能优化:页面加载速度慢怎么办?
好运连连女士
面试题性能优化前端
文章目录前端性能优化如何识别页面加载速度慢的原因性能优化的方式提高资源的请求速度http缓存--提升二次访问的响应速度CDN缓存静态资源缓存webpack的hash策略-文件资源缓存减少资源请求量图片懒加载代码构建优化webpack资源压缩treesharking-js代码的精简分包按需加载浏览器渲染优化webworkerGPU加速前端性能优化如何识别页面加载速度慢的原因方式1:lighthous
- 一个完全免费、私有且本地运行的搜索聚合器-FreeAskInternet
星霜笔记
开源关注简介免费源码笔记
什么是FreeAskInternetFreeAskInternet是一个完全免费、私有且本地运行的搜索聚合器,使用LLM生成答案,无需GPU。用户可以提出一个问题,系统将使用searxng进行多引擎搜索,并将搜索结果组合到ChatGPT3.5LLM中,并根据搜索结果生成答案。所有进程都在本地运行,不需要GPU或OpenAI或GoogleAPI密钥。特征️完全免费(不需要任何API密钥)完全本地化(
- 如何评估代理IP服务对AI大模型训练的影响
http
2023年某头部AI公司的内部报告显示,在分布式训练场景下,因代理IP配置不当导致的算力浪费平均达15%。工程师们往往更关注GPU型号或算法优化,却容易忽略网络链路这个隐形变量。本文将以可复现的测试方法,拆解代理IP对训练效果的三大影响维度,手把手教您建立科学的评估体系。一、影响因子的精准拆解代理IP对训练效果的影响主要体现在三个层面:1.数据流速波动当爬虫节点通过代理IP采集训练数据时,实测
- YOLOv11快速上手:如何在本地使用TorchServe部署目标检测模型
SYC_MORE
YOLOv11系列教程:模型训练优化与部署全攻略TorchServeYOLOv11教程模型部署与推理TorchServe应用目标检测模型训练YOLO模型导出
引言YOLOv11是最新的目标检测模型,以其高效和准确著称,广泛应用于图像分割、姿态估计等任务。本文将详细介绍如何使用YOLOv11训练你的第一个目标检测模型,并通过TorchServe在本地进行部署,实现模型的快速推理。环境准备在开始之前,确保你的开发环境满足以下要求:Python版本:3.8或以上PyTorch:1.9或以上CUDA:如果使用GPU,加速训练和推理TorchServe:用于模型
- DeepSeek的架构设计
程序猿000001号
DeepSeek架构设计
DeepSeek的架构设计一、基础架构层1.超大规模算力集群跨地域异构计算:南京/临港等多地超算中心构建混合集群,10万+GPU卡规模(含H100/A100等),通过自研RDMA网络实现μs级延迟能效优化:采用液冷+余热回收技术,PUE<1.1,算力密度达50kW/机柜故障自愈:基于强化学习的节点健康预测系统,实现硬件故障30秒内隔离2.数据工场体系多模态处理管道:文本:20PB语料库,支持164
- 哪种LLM量化方法最适合您?:GGUF、GPTQ 还是 AWQ
GordonJK
人工智能机器学习深度学习
哪种LLM量化方法最适合您?:GGUF、GPTQ还是AWQ1.GGUF:(GPT-GeneratedUnifiedFormat,GPT生成的统一格式)GGUF是GGML的后继者,由llama.cpp团队推出。它是一种专为大型语言模型设计的量化方法。它允许用户在CPU上运行LLM,同时通过提供速度改进将一些层卸载到GPU。GGUF对于那些在CPU或Apple设备上运行模型的用户特别有用。在GGUF上
- 马斯克发布的Grok3如何,大家如何评价
魔王阿卡纳兹
大模型知识札记Grok3大模型AI马斯克xAI
马斯克发布的Grok3在技术界引起了广泛关注和讨论。根据多方证据,Grok3被广泛认为是目前地球上最聪明的AI模型,其性能在多个领域超越了现有的竞争对手,如DeepSeek、Gemini和ChatGPT等。技术特点与性能计算能力:Grok3的训练使用了约10万块GPU卡,计算能力是上一代Grok2的10倍。这种大规模的计算资源投入使得Grok3在推理能力和逻辑一致性方面表现出色。多模态与实时数据处
- GPU渲染管线——处理流程总结
fengnian18
cesium前端算法javascript
GPU图形渲染管线图形渲染管线(GraphicsRenderingPipeline)是GPU渲染三维场景的主要工作流程。它是一个逐步处理的框架,将三维场景的数据转化为屏幕上的二维图像。渲染管线像是一条“流水线”,输入三维几何数据(顶点、纹理等),经过一系列阶段的处理后,输出最终的像素颜色。渲染管线的主要阶段渲染管线通常分为以下几个阶段:应用阶段(ApplicationStage)发生位置:在CPU
- 尝试在exo集群下使用deepseek模型:第一步,调通llama
skywalk8163
人工智能软硬件调试人工智能exollama
exo是一个多机协同AI大模型集群软件,它可以将多种设备统一成一个强大的GPU,支持多种模型,并具有动态模型分区、自动设备发现等功能。问题实践:多机协同AI大模型集群软件exo:体验github日榜第一名的魅力!-CSDN博客在安装了exo后,一直运行没有成功,在网页运行的时候,报错让使用debug>2去调试原来可以命令行调试运行:DEBUG=9exorunllama-3.2-1b--disab
- 蓝耘科技上线 DS 满血版,500万tokens免费送!
Lethehong
热点时事科技语言模型人工智能架构服务器
嗨,我是Lethehong!立志在坚不欲说,成功在久不在速欢迎关注:点赞⬆️留言收藏欢迎使用:小智初学计算机网页AI蓝耘元生代智算云架构蓝耘元生代智算云平台是一个现代化的、基于Kubernetes的云平台,专为大规模GPU加速工作负载而构建。蓝耘旨在为工程师和创新者提供无与伦比的计算解决方案,其速度可比传统云服务提供商快35倍,成本降低30%。目录蓝耘科技上线DS满血版,500万tokens免费送
- 前端项目:获取本地计算机(局域网、公网)真实IP。
Smile_Gently
vue.jsjavascriptnginx
1、获取计算机公网真实IP方法。fetch('https://api.ipify.org/?format=json').then(response=>response.json()).then(data=>console.log('PublicIP:',data.ip)).catch(error=>console.error('ErrorfetchingpublicIP:',error));验证办
- autok3s搭建k3s ha集群并支持gpu调度
StevenforAI
容器kubernetesGPUkubernetesgpu算力容器
本文描述了如何利用autok3s搭建k3s集群,同时支持对gpu的调用和切分。文章目录前言一、autok3s是什么1.k3s2.autok3s二、部署步骤1.autok3s部署2.创建集群三、QA总结前言公司新进了一台8卡a800的机器,老板要求将这台机器做成算力节点。之前利用autok3s在单机上搭建过k3d集群(autok3s单机搭建k3d集群并支持gpu调度),尝到了autok3s部署k3s
- 探索流体模拟新境界:Unity中的基于位置的动力学(PBD)在GPU上的壮丽实践
仲玫千Samson
探索流体模拟新境界:Unity中的基于位置的动力学(PBD)在GPU上的壮丽实践PBD-Fluid-in-UnityAPBDfluidinunityrunningontheGPU项目地址:https://gitcode.com/gh_mirrors/pb/PBD-Fluid-in-Unity项目介绍欢迎来到一个创新的粒子流体动力学仿真项目,它在Unity引擎中运用GPU的强大计算力,将基于位置的动
- ubuntu下vscode ctrl+tab松开ctrl后不自动选中文件
nicekwell
ubuntuvscodelinux
vscode用ctrl+tab切换文件时,松开ctrl键后会自动选中切换的文件。但是在ubuntu下发现有时不能自动选中切换的文件,需要再次按enter键才能打开文件。经过测试发现解决方法有两个:方法1:确认wayland状态,关闭wayland。(编辑/etc/gdm3/custom.conf,设置WaylandEnable=false)方法2:我用tweaks调换了capslock和ctrl,
- 本地搭建小型 DeepSeek 并进行微调
非著名架构师
大模型知识文档智能硬件人工智能大数据大模型deepseek
本文将指导您在本地搭建一个小型的DeepSeek模型,并进行微调,以处理您的特定数据。1.环境准备Python3.7或更高版本PyTorch1.8或更高版本CUDA(可选,用于GPU加速)Git2.克隆DeepSeek仓库bash复制gitclonehttps://github.com/deepseek-ai/deepseek.gitcddeepseek3.安装依赖bash复制pipinstall
- 马斯克的Grok-3:技术突破与行业冲击的深度解析
♢.*
马斯克人工智能大模型xAIGrok3
一、技术架构与核心突破超大规模算力集群Grok-3基于xAI自研的Colossus超级计算机训练完成,搭载20万块英伟达H100GPU,累计消耗2亿GPU小时,算力投入是前代Grok-2的10倍48。这一规模远超行业平均水平,例如中国团队DeepSeek-V3的算力消耗仅为Grok-3的1/2634。技术挑战:团队在122天内完成首期10万块GPU部署,克服了散热、电力供应等工程难题1。思维链推理
- AI服务器散热黑科技:让芯片“冷静”提速
小深ai硬件分享
人工智能深度学习服务器
AI服务器为何需要散热黑科技在人工智能飞速发展的当下,AI服务器作为核心支撑,作用重大。从互联网智能推荐,到医疗疾病诊断辅助,从金融风险预测,到教育个性化学习,AI服务器广泛应用,为各类复杂人工智能应用提供强大算力。然而,AI服务器在运行时面临着严峻的散热挑战。随着人工智能技术的不断发展,对AI服务器的计算能力要求越来越高,这使得服务器的功率密度急剧增加。以GPT-4的训练为例,它需要大量的GPU
- FastGPT接入向量模型 M3E 和 重排模型 bge-reranker-large
福葫芦
M3EM3EFASTGPT
一、FastGPT接入向量模型M3E1.拉取m3e镜像#GPU模式启动,并把m3e加载到fastgpt同一个网络dockerpullregistry.cn-hangzhou.aliyuncs.com/fastgpt_docker/m3e-large-api2.查看镜像dockerimages可以按照有一个名称为registry.cn-hangzhou.aliyuncs.com/fastgpt_do
- 卷积神经网络之AlexNet经典神经网络,实现手写数字0~9识别
知识鱼丸
深度学习神经网络cnn人工智能深度学习AlexNet经典神经网络
深度学习中较为常见的神经网络模型AlexNet,AlexNet是一个采用GPU训练的深层CNN,本质是种LeNet变体。由特征提取层的5个卷积层两个下采样层和分类器中的三个全连接层构成。先看原理:AlexNet网络特点采用ReLU激活函数,使训练速度提升6倍采用dropout层,防止模型过拟合通过平移和翻转的方式对数据进行增强采用LRN局部响应归一化,限制数据大小,防止梯度消失和爆炸。但后续证明批
- KTransformers如何通过内核级优化、多GPU并行策略和稀疏注意力等技术显著加速大语言模型的推理速度?
魔王阿卡纳兹
大模型知识札记语言模型人工智能自然语言处理
KTransformers通过内核级优化、多GPU并行策略和稀疏注意力等技术显著加速大语言模型的推理速度,具体体现在以下几个方面:内核级优化:KTransformers采用了高效的内核级优化技术,包括对Transformer模型中的关键操作进行优化。例如,通过使用Llama和Marlin等高效内核,显著提升了计算效率。通过IntelAMX指令集优化,KTransformers在CPU端实现了更高的
- Vulkan
hanpfei
Android图形系统
Android7.0添加了对Vulkan的支持,一个高性能3D图形的低开销跨平台API。像OpenGLES一样,Vulkan提供了在应用中创建高质量,实时图形的工具。Vulkan的优势包括CPU开销降低及支持SPIR-VBinaryIntermediate语言。片上系统生产商(SoCs)比如GPU独立硬件供应商(IHVs)可以为Android编写Vulkan驱动;OEMs简单地需要为特定的硬件集成
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D