Flink学习——处理不同数据源的流数据,存入不同的Sink端

目录

一、单机版安装

(一)添加依赖

(二)数据源——Source

1.加载元素数据

2.加载集合数据

3.加载文件目录

4.加载端口

5.加载kafka的topic——重要&常用

6.加载自定义数据源

(三)输出端——Sink

1.读取文件中的数据,处理后输出到另一个文件

2.Source——文件&Sink——Mysql

3.读取kafka的数据,处理后传入mysql中

4.加载kafka中topic的数据,处理后传入另一个topic

5.加载kafka中topic的数据,处理后传入HBase中

6. 加载kafka中topic的数据,处理后传入redis中


一、单机版安装

Flink单机版的安装只需要把压缩包解压即可。

[root@ant168 install]# ls
flink-1.13.2-bin-scala_2.12.tgz  mongodb-linux-x86_64-4.0.10.tgz
kafka_2.12-2.8.0.tgz             zookeeper-3.4.5-cdh5.14.2.tar.gz
[root@ant168 install]# tar -zxf /opt/install/flink-1.13.2-bin-scala_2.12.tgz -C /opt/soft/

# 开启flink客户端
[root@ant168 flink-1.13.2]# ./bin/start-cluster.sh 

[root@ant168 flink-1.13.2]# jps
9050 Jps
1628 StandaloneSessionClusterEntrypoint
1903 TaskManagerRunner

WebUI:localhost:8081

Flink学习——处理不同数据源的流数据,存入不同的Sink端_第1张图片

二、IDEA操作Flink

(一)添加依赖

创建maven项目,quickstart

  
    UTF-8
    1.8
    1.8
    1.13.2
  

  
    
      junit
      junit
      4.11
      test
    
    
      org.apache.flink
      flink-java
      ${flink.version}
    
    
      org.apache.flink
      flink-streaming-java_2.12
      ${flink.version}
    
    
      org.apache.flink
      flink-clients_2.12
      ${flink.version}
    
    
      org.apache.commons
      commons-compress
      1.21
    
    
      org.apache.flink
      flink-connector-kafka_2.12
      ${flink.version}
    
    
      org.apache.flink
      flink-statebackend-rocksdb_2.12
      ${flink.version}
    
    
      org.apache.flink
      flink-table-planner_2.12
      ${flink.version}
    
    
      org.apache.flink
      flink-table-planner-blink_2.12
      ${flink.version}
    
    
      org.apache.flink
      flink-csv
      ${flink.version}
    
    
      mysql
      mysql-connector-java
      8.0.29
    
    
    
    
    
    

    
    
      org.apache.flink
      flink-scala_2.12
      ${flink.version}
    
    
      org.apache.flink
      flink-streaming-scala_2.12
      ${flink.version}
    

    
      org.apache.hadoop
      hadoop-common
      3.1.3
    
    
      org.apache.hadoop
      hadoop-hdfs
      3.1.3
    
    
      org.apache.flink
      
      flink-connector-kafka_2.12
      ${flink.version}
    
    
      org.apache.hbase
      hbase-client
      2.3.5
    
    
      org.apache.hbase
      hbase-server
      2.3.5
    
  

(二)数据源——Source

1.加载元素数据

import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment

object SourceTest {
  def main(args: Array[String]): Unit = {
    // TODO 1.创建环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1) // 设置并行度

    // TODO 2.添加数据源
    // TODO 加载元素
    val stream1: DataStream[Any] = env.fromElements(1, 2, 3, 4, 5, "hello")

    // TODO 3.输出
    stream1.print()
    env.execute("sourcetest")
  }
}

运行结果:
1
2
3
4
5
hello

2.加载集合数据

import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment

// 定义一个样例类——温度传感器
case class SensorReading(id: String, timestamp: Long, temperature: Double)

object SourceTest {
  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1) 

    val dataList = List(
          SensorReading("sensor_1", 1684201947, 36.8),
          SensorReading("sensor_2", 1684202000, 35.7),
          SensorReading("sensor_3", 1684202064, 36.3),
          SensorReading("sensor_4", 1684202064, 35.8)
        )
    val stream1: DataStream[SensorReading] = env.fromCollection(dataList)

    stream1.print()
    env.execute("sourcetest")
  }
}

运行结果:

SensorReading(sensor_1,1684201947,36.8)
SensorReading(sensor_2,1684202000,35.7)
SensorReading(sensor_3,1684202064,36.3)
SensorReading(sensor_4,1684202064,35.8)

3.加载文件目录

import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment

object SourceTest {
  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)

    val path = "D:\\javaseprojects\\flinkstu\\resources\\sensor.txt"
    val stream1: DataStream[String] = env.readTextFile(path)

    stream1.print()
    env.execute("sourcetest")
  }
}

运行结果:
sensor_1,1684201947,36.8
sensor_7,1684202000,17.7
sensor_4,1684202064,20.3
sensor_2,1684202064,35.8

4.加载端口

虚拟机要下载nc命令,已经下载的可以忽略

yum -y install nc
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment

object SourceTest {
  def main(args: Array[String]): Unit = {
    // TODO 1.创建环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)    
    val stream1: DataStream[String] = env.socketTextStream("ant168", 7777)
    stream1.print()
    env.execute("sourcetest")
  }
}

5.加载kafka的topic——重要&常用

import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer
import org.apache.kafka.clients.consumer.ConsumerConfig

import java.util.Properties

object SourceTest {
  def main(args: Array[String]): Unit = {
    // TODO 1.创建环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)

    val properties = new Properties()
    properties.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "ant168:9092")
    properties.setProperty(ConsumerConfig.GROUP_ID_CONFIG, "sensorgroup1")
    val stream1: DataStream[String] = env.addSource(new FlinkKafkaConsumer[String]("sensor", new SimpleStringSchema(), properties))
    // 注意:重新启动就不会读取topic之前的数据

    stream1.print()
    env.execute("sourcetest")
  }
}

运行结果:

hello
world
# 1.开启zookeeper和kafka
zkServer.sh status
nohup kafka-server-start.sh /opt/soft/kafka212/config/server.properties &

# 2.创建topic
kafka-topics.sh --create --zookeeper ant168:2181 --topic sensor --partitions 1 --replication-factor 1

# 3.开始生产消息
kafka-console-producer.sh --topic sensor --broker-list ant168:9092
>hello
>world

6.加载自定义数据源

import org.apache.flink.streaming.api.functions.source.SourceFunction
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment

import scala.util.Random

// 定义一个样例类——温度传感器
case class SensorReading(id: String, timestamp: Long, temperature: Double)

object SourceTest {
  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)

   // TODO 读取自定义数据源
    val stream1: DataStream[SensorReading] = env.addSource(new MySensorSource)

    // TODO 3.输出
    stream1.print()
    env.execute("sourcetest")
  }
}

// 自定义数据源
class MySensorSource() extends SourceFunction[SensorReading] {
  override def run(sourceContext: SourceFunction.SourceContext[SensorReading]): Unit = {
    val random = new Random()
    while (true) {
      val i: Int = random.nextInt()
      sourceContext.collect(SensorReading("生成: " + i, 1, 1))
    }
    Thread.sleep(500)
  }

  override def cancel(): Unit = {
  }
}

运行结果:

SensorReading(生成: -439723144,1,1.0)
SensorReading(生成: -937590179,1,1.0)
SensorReading(生成: -40987764,1,1.0)
SensorReading(生成: 525868361,1,1.0)
SensorReading(生成: -840926328,1,1.0)
SensorReading(生成: -998392768,1,1.0)
SensorReading(生成: -1308765349,1,1.0)
SensorReading(生成: -806454922,1,1.0)

(三)输出端——Sink

1.读取文件中的数据,处理后输出到另一个文件

import source.SensorReading
import org.apache.flink.api.common.serialization.SimpleStringEncoder
import org.apache.flink.core.fs.Path
import org.apache.flink.streaming.api.functions.sink.filesystem.StreamingFileSink
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment

object SinkTest {
  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)

    val path = "D:\\javaseprojects\\flinkstu\\resources\\sensor.txt"
    val stream1: DataStream[String] = env.readTextFile(path)

    val dataStream: DataStream[SensorReading] = stream1.map(data => {
      val arr: Array[String] = data.split(",")
      SensorReading(arr(0).trim, arr(1).trim.toLong, arr(2).trim.toDouble)
    })

//    dataStream.print()
//    writeAsCsv方法已过时
//    dataStream.writeAsCsv("D:\\javaseprojects\\flinkstu\\resources\\out.txt")

    dataStream.addSink(
      StreamingFileSink.forRowFormat(
      new Path("D:\\javaseprojects\\flinkstu\\resources\\out1.txt"),
      new SimpleStringEncoder[SensorReading]()
    ).build()
    )

    env.execute("sinktest")
  }
}

out1.txt文件内容:

SensorReading(sensor_1,1684201947,36.8)
SensorReading(sensor_7,1684202000,17.7)
SensorReading(sensor_4,1684202064,20.3)
SensorReading(sensor_2,1684202064,35.8)

2.Source——文件&Sink——Mysql

import source.SensorReading
import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.functions.sink.{RichSinkFunction, SinkFunction}
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment

import java.sql.{Connection, DriverManager, PreparedStatement}
/**
 * 将flink处理后的数据传入mysql中
 */
object JdbcSinkTest {
  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1) 

    // TODO 从文件中读取数据存入mysql中
    val path = "D:\\javaseprojects\\flinkstu\\resources\\sensor.txt"
    val stream1: DataStream[String] = env.readTextFile(path)

    // TODO 处理文件数据
    val dataStream: DataStream[SensorReading] = stream1.map(data => {
      val arr: Array[String] = data.split(",")
      SensorReading(arr(0).trim, arr(1).trim.toLong, arr(2).trim.toDouble)
    })

    dataStream.addSink(new MyJdbcSink)
    env.execute("jdbc sink test")
  }
}

class MyJdbcSink extends RichSinkFunction[SensorReading] {
  var connection: Connection = _

  var insertState: PreparedStatement = _
  var updateState: PreparedStatement = _

  override def open(parameters: Configuration): Unit = {
    connection = DriverManager.getConnection("jdbc:mysql://192.168.180.141:3306/kb21?useSSL=false", "root", "root")

    insertState = connection.prepareStatement("insert into sensor_temp(id,temp) value (?,?)")
    updateState = connection.prepareStatement("update sensor_temp set temp=? where id=?")
  }

  override def invoke(value: SensorReading, context: SinkFunction.Context): Unit = {
    updateState.setDouble(1, value.temperature)
    updateState.setString(2, value.id)
    val i: Int = updateState.executeUpdate()
    println(i)
    // 当原表中没有数据时,就不能执行update语句,所以影响的行数==0,而是执行insert语句
    // 反之,当原表中有数据,就执行update语句,影响的行数为1
    if (i == 0) {
      insertState.setString(1, value.id)
      insertState.setDouble(2, value.temperature)
      insertState.execute()
    }
  }

  override def close(): Unit = {
    insertState.close()
    updateState.close()
    connection.close()
  }
}

数据源:

D:\javaseprojects\flinkstu\resources\sensor.txt

sensor_1,1684201947,36.8
sensor_2,1684202000,17.7
sensor_1,1684202064,20.3
sensor_2,1684202068,35.8

DataGrip操作:

drop table sensor_temp;
create table sensor_temp(
    id varchar(32),
    temp double
);

select * from sensor_temp;

Flink学习——处理不同数据源的流数据,存入不同的Sink端_第2张图片

每次只获取最新的数据。

3.读取kafka的数据,处理后传入mysql中

import source.SensorReading
import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.functions.sink.{RichSinkFunction, SinkFunction}
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer
import org.apache.kafka.clients.consumer.ConsumerConfig

import java.sql.{Connection, DriverManager, PreparedStatement}
import java.util.Properties

/**
 * 将flink处理kafka后的数据传入mysql中
 */
object KafkaToMysqlSinkTest {
  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1) // 设置并行度

    // TODO 从kafka中读取数据
    val properties = new Properties()
    properties.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "ant168:9092")
    properties.setProperty(ConsumerConfig.GROUP_ID_CONFIG, "sensorgroup1")

    // TODO 订阅topic
    val stream1: DataStream[String] = env.addSource(new FlinkKafkaConsumer[String]("sensor", new SimpleStringSchema(), properties))

    // TODO 处理topic数据
    val dataStream: DataStream[SensorReading] = stream1.map(data => {
      val arr: Array[String] = data.split(",")
      SensorReading(arr(0).trim, arr(1).trim.toLong, arr(2).trim.toDouble)
    })

    // TODO 处理后的topic数据存入mysql中
    dataStream.addSink(new MysqlSink)
    env.execute("kafka sink test")
  }
}

class MysqlSink extends RichSinkFunction[SensorReading] {
  var connection: Connection = _

  var insertState: PreparedStatement = _
  var updateState: PreparedStatement = _

  override def open(parameters: Configuration): Unit = {
    connection = DriverManager.getConnection("jdbc:mysql://192.168.180.141:3306/kb21?useSSL=false", "root", "root")

    insertState = connection.prepareStatement("insert into sensor_temp(id,temp) value (?,?)")
    updateState = connection.prepareStatement("update sensor_temp set temp=? where id=?")
  }

  override def invoke(value: SensorReading, context: SinkFunction.Context): Unit = {
    updateState.setDouble(1, value.temperature)
    updateState.setString(2, value.id)
    val i: Int = updateState.executeUpdate()
    println(i)
    // 当原表中没有数据时,就不能执行update语句,所以影响的行数==0,而是执行insert语句
    // 反之,当原表中有数据,就执行update语句,影响的行数为1
    if (i == 0) {
      insertState.setString(1, value.id)
      insertState.setDouble(2, value.temperature)
      insertState.execute()
    }
  }

  override def close(): Unit = {
    insertState.close()
    updateState.close()
    connection.close()
  }
}

kafka生产消息:

[root@ant168 opt]# kafka-console-producer.sh --topic sensor --broker-list ant168:9092
>sensor_1,1684201947,36.8
>sensor_1,1684201947,36.10            
>sensor_2,1684202068,35.8

Mysql数据库:

Flink学习——处理不同数据源的流数据,存入不同的Sink端_第3张图片

4.加载kafka中topic的数据,处理后传入另一个topic

import source.SensorReading
import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.connectors.kafka.{FlinkKafkaConsumer, FlinkKafkaProducer}
import org.apache.kafka.clients.consumer.ConsumerConfig

import java.util.Properties

/**
 * 将flink处理kafka后的数据传入kafka中
 */
object KafkaToKafkaSinkTest {
  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1) // 设置并行度

    // TODO 从kafka中读取数据
    val properties = new Properties()
    properties.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "ant168:9092")
    properties.setProperty(ConsumerConfig.GROUP_ID_CONFIG, "sensorgroup1")

    // TODO 订阅topic
    val stream1: DataStream[String] = env.addSource(new FlinkKafkaConsumer[String]("sensor", new SimpleStringSchema(), properties))

    // TODO 处理topic数据
    val dataStream: DataStream[String] = stream1.map(data => {
      val arr: Array[String] = data.split(",")
      SensorReading(arr(0).trim, arr(1).trim.toLong, arr(2).trim.toDouble).toString()
    })

    // TODO 处理后的topic数据存入另一个topic中
    dataStream.addSink(
      new FlinkKafkaProducer[String]("ant168:9092","sensorsinkout",new SimpleStringSchema())
    )
    env.execute("kafka sink test")
  }
}

        注意:这里默认是latest提交方式,如果程序中断,kafka生产者此时传入数据,重新开启该程序,后面传入的数据也会被消费。

5.加载kafka中topic的数据,处理后传入HBase中

HBase中创建表和列簇:

hbase(main):002:0> create_namespace 'ha' 

hbase(main):004:0> create 'ha:test','sensor'

hbase(main):006:0> list_namespace_tables 'ha'

Flink代码:

import source.SensorReading
import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.functions.sink.{RichSinkFunction, SinkFunction}
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer
import org.apache.hadoop.conf
import org.apache.hadoop.hbase.client.{BufferedMutator, BufferedMutatorParams, ConnectionFactory, Put}
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.hbase.{HBaseConfiguration, HConstants, TableName, client}
import org.apache.kafka.clients.consumer.ConsumerConfig

import java.util.Properties
/**
 * 将数据流处理后写入到HBase中
 */
object KafkaToHBaseSinkTest {
  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1) // 设置并行度

    // TODO 从kafka中读取数据
    val properties = new Properties()
    properties.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "ant168:9092")
    properties.setProperty(ConsumerConfig.GROUP_ID_CONFIG, "sensorgroup1")

    // TODO 订阅topic
    val stream1: DataStream[String] = env.addSource(new FlinkKafkaConsumer[String]("sensor", new SimpleStringSchema(), properties))

    // TODO 处理topic数据
    val dataStream: DataStream[SensorReading] = stream1.map(data => {
      val arr: Array[String] = data.split(",")
      SensorReading(arr(0).trim, arr(1).trim.toLong, arr(2).trim.toDouble)
    })

    // TODO 处理后的topic数据存入HBase中
    dataStream.addSink(new MyHBaseSink)
    env.execute("HBase sink test")
  }
}

class MyHBaseSink extends RichSinkFunction[SensorReading] {
  var connection: client.Connection = _
  var mutator: BufferedMutator = _

  override def open(parameters: Configuration): Unit = {
    val configuration: conf.Configuration = HBaseConfiguration.create()
    configuration.set(HConstants.HBASE_DIR, "hdfs://lxm147:9000/hbase")
    configuration.set(HConstants.ZOOKEEPER_QUORUM, "lxm147")
    configuration.set(HConstants.CLIENT_PORT_STR, "2181")
    connection = ConnectionFactory.createConnection(configuration)

    val params = new BufferedMutatorParams(TableName.valueOf("ha:test"))
    params.writeBufferSize(10 * 1024 * 1024) // 达到缓存进行写入
    params.setWriteBufferPeriodicFlushTimeoutMs(5 * 1000L) // 达不到缓存但是达到时间也进行写入

    mutator = connection.getBufferedMutator(params)
  }

  override def invoke(value: SensorReading, context: SinkFunction.Context): Unit = {
    println(connection)
    println(mutator)
    println(value)
    val put = new Put(Bytes.toBytes(value.id + value.temperature + value.timestamp))
    put.addColumn("sensor".getBytes(), "id".getBytes(), value.id.getBytes())
    put.addColumn("sensor".getBytes(), "timestamp".getBytes(), value.timestamp.toString.getBytes)
    put.addColumn("sensor".getBytes(), "temperature".getBytes(), value.temperature.toString.getBytes())
    mutator.mutate(put)
    mutator.flush()
  }

  override def close(): Unit = {
    connection.close()
  }
}

kafka中传入数据:

[root@ant168 flink-1.13.2]# kafka-console-producer.sh --topic sensor --broker-list ant168:9092
>sensor_4 , 1684202064, 27.3                                                                                                                                                
>sensor_2,1684202068,  35.8

HBase中查看表数据:

hbase(main):010:0> scan 'ha:test'
ROW                                       COLUMN+CELL  
 sensor_235.81684202068                   column=sensor:id, timestamp=2023-05-17T09:44:41.123, value=sensor_2
 sensor_235.81684202068                   column=sensor:temperature, timestamp=2023-05-17T09:44:41.123, value=35.8
 sensor_235.81684202068                   column=sensor:timestamp, timestamp=2023-05-17T09:44:41.123, value=1684202068 
 sensor_427.31684202064                   column=sensor:id, timestamp=2023-05-17T09:21:41.475, value=sensor_4
 sensor_427.31684202064                   column=sensor:temperature, timestamp=2023-05-17T09:21:41.475, value=27.3 
 sensor_427.31684202064                   column=sensor:timestamp, timestamp=2023-05-17T09:21:41.475, value=1684202064

6. 加载kafka中topic的数据,处理后传入redis中


      org.apache.bahir
      flink-connector-redis_2.12
      1.1.0
    
package nj.zb.kb21.sink

import nj.zb.kb21.source.SensorReading
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.connectors.redis.RedisSink
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig
import org.apache.flink.streaming.connectors.redis.common.mapper.{RedisCommand, RedisCommandDescription, RedisMapper}

/**
 * 将flink处理后的数据传入redis中
 */
object RedisSinkTest {
  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1) // 设置并行度

    val inputStream: DataStream[String] = env.socketTextStream("192.168.180.141", 7777)

    val dataStream: DataStream[SensorReading] = inputStream.map(data => {
      val arr: Array[String] = data.split(",")
      SensorReading(arr(0).trim, arr(1).trim.toLong, arr(2).trim.toDouble)
    })

    val redisConf: FlinkJedisPoolConfig = new FlinkJedisPoolConfig.Builder()
      .setHost("192.168.180.141")
      .setPort(6379)
      .setTimeout(30000)
      .build()

    dataStream.addSink(new RedisSink[SensorReading](redisConf,new MyRedisMapper))

    env.execute("redis sink test")
  }
}

class MyRedisMapper extends RedisMapper[SensorReading] {
  override def getCommandDescription: RedisCommandDescription = {
    new RedisCommandDescription(RedisCommand.HSET, "sensor")
  }

  override def getKeyFromData(data: SensorReading): String = {
    data.id
  }

  override def getValueFromData(data: SensorReading): String = {
    data.timestamp+":"+data.temperature
  }
}

Flink学习——处理不同数据源的流数据,存入不同的Sink端_第4张图片

Redis Desktop

Flink学习——处理不同数据源的流数据,存入不同的Sink端_第5张图片

你可能感兴趣的:(#,Flink-scala版,flink,学习,scala)