- Prompt Engineering for Large Language Models
三月七꧁ ꧂
论文合集llm+promptprompt语言模型人工智能自然语言处理pdfjavascript前端
题目大型语言模型的快速工程简介 随着OpenAI的ChatGPT和Google的Bard等软件的普及,大语言模型(LLM)已经渗透到生活和工作的许多方面。例如,ChatGPT可用于提供定制食谱,建议替换缺失的成分。它可用于起草研究提案、用多种编程语言编写工作代码、在语言之间翻译文本、协助政策制定等等(Gao2023)。用户通过“提示”或自然语言指令与大型语言模型进行交互。精心设计的提示可以带
- 潜入思维的海洋:SoftCoT++如何让语言模型更聪明
步子哥
智能涌现语言模型人工智能自然语言处理
在人工智能的浩瀚星空下,大型语言模型(LLMs)如同一颗颗璀璨的恒星,照亮了从文本生成到复杂推理的广阔领域。然而,这些模型在推理任务中往往像是在迷雾中航行——尽管它们能抵达目的地,却常常因为固定的思维路径而错过更优的航线。2025年5月,一篇题为《SoftCoT++:Test-TimeScalingwithSoftChain-of-ThoughtReasoning》的论文如同一盏明灯,照亮了如何让
- 企业级AI开发利器:Spring AI框架深度解析与实战_spring ai实战
AI大模型-海文
人工智能springpython算法开发语言java机器学习
企业级AI开发利器:SpringAI框架深度解析与实战一、前言:Java生态的AI新纪元在人工智能技术爆发式发展的今天,Java开发者面临着一个新的挑战:如何将大语言模型(LLMs)和生成式AI(GenAI)无缝融入企业级应用。传统的Java生态缺乏统一的AI集成方案,开发者往往需要为不同AI供应商(如OpenAI、阿里云、HuggingFace)编写大量重复的接口适配代码,这不仅增加了开发成本,
- PyTorch教程:LSTM语言模型的动态量化技术解析
怀灏其Prudent
PyTorch教程:LSTM语言模型的动态量化技术解析tutorialsPyTorchtutorials.项目地址:https://gitcode.com/gh_mirrors/tuto/tutorials前言在深度学习模型部署过程中,模型大小和推理速度是两个至关重要的考量因素。PyTorch提供的动态量化技术能够在不显著影响模型准确率的前提下,有效减小模型体积并提升推理速度。本文将深入解析如何对
- 大语言模型(LLM)量化基础知识(一)
-派神-
RAGNLPChatGPT语言模型人工智能自然语言处理
承接各类AI相关应用开发项目(包括但不限于大模型微调、RAG、AI智能体、NLP、机器学习算法、运筹优化算法、数据分析EDA等)!!!有意愿请私信!!!随着大型语言模型(LLM)的参数数量的增长,与其支持硬件(加速器内存)增长速度之间的差距越来越大,如下图所示:上图显示,从2017年到2022年,语言模型的大小显著增加:2017年:Transformer模型(0.05B参数)2018年:GPT(0
- 大模型读过的书,终将成为人类的新血肉:一场知识炼金术的深度剖析
黑巧克力可减脂
AIGCAIGC人工智能
“吾生也有涯,而知也无涯。以有涯随无涯,殆已!”庄子千年前的慨叹,在信息爆炸的今天更显沉重。人类个体穷尽一生,所能阅读、理解、吸收的书籍不过沧海一粟。然而,一种前所未有的“数字读者”正在悄然改变这一困境——大语言模型以其近乎贪婪的“阅读”能力,正对浩如烟海的书籍进行前所未有的批量处理与深度总结。这并非冰冷的机械扫描,而是一场静默却影响深远的知识炼金术。巨量“吞噬”:大模型如何“阅读”万卷书?数据洪
- 配置不当的MCP服务器使AI代理系统面临入侵风险
FreeBuf-
服务器人工智能运维
风险概述:默认配置暴露命令执行漏洞数百台用于连接大语言模型(LLM)与第三方服务、数据源及工具的模型上下文协议(ModelContextProtocol,MCP)服务器存在默认配置缺陷,可能导致用户面临未授权的操作系统命令执行等风险。随着代理型AI(AgenticAI)的兴起,MCP服务器正迅速成为增强AI模型推理上下文的关键工具。但安全研究人员警告,大量公开共享的MCP服务器存在不安全配置,攻击
- 从实验到生产:DeepSeek大模型工程化部署的关键步骤与风险控制
一ge科研小菜菜
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注一、引言:大模型部署迈入“工程化时代”随着DeepSeek等开源大语言模型(LLM)的发展,大模型不再是AI实验室的专属工具,越来越多的企业正尝试将其纳入业务生产系统,应用于客服问答、合同审查、数据分析、自动写作等场景。但模型的能力≠可用的系统。从模型下载到模型上线,中间隔着“部署的鸿沟”:资源配置、服务稳定性、响应效率、安全控制、上线合规……一
- 【人工智能】微调的秘密武器:释放大模型的无限潜能
蒙娜丽宁
Python杂谈人工智能人工智能
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界在人工智能迅猛发展的今天,大规模语言模型(LLMs)以其强大的通用能力席卷各行各业。然而,如何让这些通用模型在特定领域或任务中发挥最大潜力?答案是微调(Fine-tuning)。本文深入探讨微调的理论基础、技术细节与实践方法,揭示其作为解锁大模型隐藏潜力
- 基于Transformer实现机器翻译
yyyyurina.
transformer机器翻译深度学习
目录一、前言1.1什么是Transformer?1.2Transfomer的基本结构1.2Transformer的重要组成部分1.2.1位置编码(PositionalEncode)1.2.2自注意力机制(Self-Attention)1.2.3多头注意力(Multi-HeadAttention)1.2.4位置感知前馈层(Position-wiseFFN)1.2.5残差连接与层归一化二、AutoDL
- 利用人工智能做python爬虫
在Python爬虫领域,人工智能(AI)可以从多个维度赋能,提升爬虫的效率、智能性和应对复杂反爬策略的能力。下面从数据提取、反反爬、自动化脚本生成等方面,介绍如何结合AI技术实现更强大的Python爬虫:一、利用大语言模型辅助爬虫开发1.代码生成与优化大语言模型(如GPT系列、文心一言、通义千问等)可以根据自然语言描述快速生成Python爬虫代码。例如,你可以向模型输入“写一个Python爬虫,抓
- VLLM:虚拟大型语言模型(Virtual Large Language Model)
大霸王龙
语言模型人工智能自然语言处理
VLLM:虚拟大型语言模型(VirtualLargeLanguageModel)VLLM指的是一种基于云计算的大型语言模型的虚拟实现。它通常是指那些由多个服务器组成的分布式计算环境中的复杂机器学习模型,这些模型能够处理和理解大量的文本数据。VLLM的核心是“大型语言模型”,这是一种通过深度神经网络训练的算法,能够在理解和生成人类语言方面表现出极高的能力。解释:虚拟:意味着这个模型不是在单个物理设备
- vLLM(Virtual Large Language Model) 框架:一个开源的高性能推理和服务的框架
彬彬侠
大模型vLLM高性能推理PagedAttentionpython大模型
vLLM(VirtualLargeLanguageModel)是一个开源的高性能推理和服务的框架,专为大语言模型(LLM)设计,旨在优化推理速度、内存效率和吞吐量。它通过创新的内存管理和调度技术(如PagedAttention)解决了传统LLM推理中的内存瓶颈和性能问题,广泛应用于对话系统、文本生成、实时翻译等场景。以下是对vLLM框架的详细介绍,包括其核心特性、工作原理、架构、优势、局限性以及使
- 解决OpenAI API国内使用难题:从注册、支付到代码集成的完整教程
技术程序猿华锋
AIGC资讯gpt-3ai
对于国内开发者而言,接入并使用OpenAIAPI是探索大型语言模型能力的重要途径。然而,在实际操作中,开发者普遍会遇到注册流程受阻、支付渠道不便等挑战。本文旨在提供一份清晰、完整的技术操作指南,系统性地介绍两种获取和使用OpenAIAPIKey的主流方式,并重点强调APIKey的安全管理与成本优化策略,帮助开发者扫清障碍,高效、安全地将OpenAI的能力集成到自己的项目中。核心安全提示:APIKe
- OpenAI O3 大模型深度解析:功能、API Key 获取、Python 代码开发教程 (附代码)
技术程序猿华锋
AIGC资讯python开发语言ChatGPTai
引言:OpenAIo3大模型:新一代推理引擎的崛起人工智能领域正经历着前所未有的飞速发展,其中大型语言模型(LLM)的能力边界不断被拓宽。OpenAI作为该领域的领军者之一,继其广受关注的o1模型之后,推出了新一代的o3大模型系列。这一系列模型的问世,不仅代表了技术的又一次重要迭代,更预示着人工智能在复杂推理和自主能力方面迈向了新的台阶。o3模型的诞生背景与意义OpenAIo3是作为OpenAIo
- 如何解析JSON输出: 尝试使用JsonOutputParser
tt_jishu
jsonpython人工智能
在当今AI驱动的世界中,能够获得结构化的输出是利用大型语言模型(LLM)的关键。尽管一些模型提供商支持内置方式来返回结构化输出,但并不是所有的模型都有这种能力。因此,使用输出解析器(OutputParser)来帮助用户通过提示指定任意JSON模式,并查询符合该模式的模型输出,最后将该模式解析为JSON,是一种常见而有效的方法。技术背景介绍输出解析器是使语言模型生成结构化数据的工具。这在许多应用场景
- 入选 ICML 2025!哈佛医学院等推出全球首个 HIE 领域临床思维图谱模型,神经认知结果预测任务上性能提升 15%
hyperai
在人工智能技术突飞猛进的当下,大型视觉-语言模型(LVLMs)正以惊人的速度重塑多个领域的认知边界。在自然图像与视频分析领域,这类模型依托先进的神经网络架构、海量标注数据集与强大算力支持,已能精准完成物体识别、场景解析等高阶任务。而在自然语言处理领域,LVLMs通过对TB级文本语料的学习,在机器翻译、文本摘要、情感分析等任务上达到专业级水准,其生成的学术摘要甚至能精准提炼医学文献的核心结论。然而当
- PNAS顶刊:使用 GPT-4 揭示概念的语义
GaëlLeMens、BalázsKovács、MichaelT.HannanandGuillemPros合作的题为“UncoveringthesemanticsofconceptsusingGPT-4”的文章,发表于ProceedingsoftheNationalAcademyofSciences。摘要最近的大型语言模型(LLM),如GPT-3.5和GPT-4生成类似人类的文本的能力表明,社会科
- 开源浪潮之巅:当前最热门的开源项目全景图
万能小贤哥
开源
开源世界活力澎湃,无数项目推动着技术边界。以下精选当前最受关注、社区活跃的热门开源项目,涵盖人工智能、开发工具、基础设施等关键领域:一、人工智能与机器学习:引领创新前沿Llama系列(MetaAI):核心价值:Meta开源的大语言模型家族(Llama2,Llama3),性能媲美顶尖闭源模型。提供多种规模版本,支持商用,极大降低了企业和研究者使用先进LLM的门槛。热度体现:GitHub星标飞速增长,
- LangChain异步编程的应用与源码解析(67)
Android 小码蜂
LangChain框架入门langchainmicrosoft人工智能深度学习
LangChain异步编程的应用与源码解析一、LangChain异步编程概述1.1异步编程的必要性在LangChain构建的大语言模型应用中,大量操作存在I/O密集特性,如与外部API(OpenAI等)交互、访问向量数据库、读取文件等。传统同步编程模式下,程序在执行这些操作时会处于阻塞状态,导致资源利用率低、响应速度慢,无法充分发挥系统性能。异步编程允许程序在等待I/O操作完成时,切换去执行其他任
- LangChain大语言模型接口层源码与调用机制深度解析(68)
Android 小码蜂
LangChain框架入门langchain语言模型网络人工智能深度学习
LangChain大语言模型接口层源码与调用机制深度解析I.接口层概述1.1接口层在LangChain中的定位LangChain大语言模型接口层是连接外部大语言模型(LLM)与上层应用逻辑的核心枢纽。它通过标准化的接口封装不同厂商的LLM服务,如OpenAI、Anthropic、HuggingFace等,使开发者能够以统一方式调用各类模型,而无需关注底层API细节。这种设计极大提升了框架的扩展性和
- LangChain基础抽象类与接口的设计思想及实现源码级分析(66)
Android 小码蜂
LangChain框架入门langchain人工智能深度学习
LangChain基础抽象类与接口的设计思想及实现源码级分析I.抽象类与接口设计的核心意义1.1构建统一规范与标准在LangChain框架中,抽象类与接口的设计旨在为各类组件建立统一的行为规范。通过定义抽象方法和接口契约,确保不同功能模块(如语言模型、记忆模块、嵌入模型等)具备一致的调用方式和数据交互格式。例如,所有嵌入模型都需继承自BaseEmbeddings抽象类,并实现embed_docum
- LnagChain思维链提示技术解析:原理、架构与源码实现(13)
Android 小码蜂
LangChain框架入门架构人工智能langchain
LANGCHAIN思维链提示技术解析:原理、架构与源码实现一、LangChain思维链提示概述1.1思维链提示的基本概念思维链提示(ChainofThought,CoT)是一种通过引导大型语言模型(LLM)生成中间推理步骤来提高复杂问题解决能力的技术。与传统的直接提问相比,思维链提示要求模型在给出最终答案之前,先展示其思考过程。这种方法最早由Wei等人在2022年的论文中提出,实验表明,思维链提示
- 3 大语言模型预训练数据-3.2 数据处理-3.2.2 冗余去除——1.SimHash算法处理冗余信息的核心原理
SimHash算法处理冗余信息的核心原理一、SimHash算法的定位与核心目标二、SimHash算法的核心原理与执行流程1.**文本预处理与特征提取**2.**特征向量化与哈希映射**3.**特征向量聚合**4.**降维生成SimHash值**5.**相似性判断与冗余过滤**三、SimHash处理冗余信息的核心优势四、实际应用中的优化策略五、SimHash的局限性与补充方案一、SimHash算法的
- 基础RAG实现,最佳入门选择(五)
人工智能
上下文标头在RAG中使用增强生成(RAG)通过在生成响应之前检索相关的外部知识来提高语言模型的事实准确性。然而,标准组块经常丢失重要的上下文,使得检索不太有效。上下文块标头(CCH)通过在嵌入每个块之前为每个块添加高级上下文(如文档标题或部分标头)来增强RAG。这提高了检索质量并防止了断章取义的响应。具体操作步骤1.数据摄取:加载和预处理文本数据。2.带有上下文标头的组块:提取部分标题并将其添加到
- 借力 提示词检索解码与 OpenVINO™ GenAI 全面提升 LLM 推理
OpenVINO 中文社区
经验分享
大语言模型(LLM)彻底改变了自然语言处理,推动了聊天机器人、摘要和内容生成等应用的发展。然而,推理效率依然是一个关键挑战,尤其在需要低延迟响应的场景下更为突出。试想你在一家餐厅,经常点同样的菜。服务员不必每次都询问你的订单再传达给厨房,而是直接认出你常点的菜品并立即上菜,这样既缩短了等待时间,也加快了整个服务流程。同样,在文本生成中,模型常常遇到输入提示中的重复模式。与每次都从零开始生成toke
- Prompt工程深度解析:从指令模型到前沿模型的提示词设计演进
木鱼时刻
大模型prompt人工智能
深入探讨Prompt工程的核心原理,分析不同代际模型的能力差异,揭示企业级提示词模板化的价值与实践目录1.概述2.Prompt基础:核心要素与原则3.模型演进与Prompt策略差异4.企业级Prompt工程5.Prompt工程技术体系6.特殊任务实践技巧7.总结8.参考资料1.概述随着大语言模型(LLM)技术的飞速迭代,我们正处于一个关键的转折点。模型的演进不再是简单的参数增长,而是在核心能力上产
- FastMCP:构建 MCP 服务器和客户端的高效 Python 框架
从零开始学习人工智能
服务器网络前端
在人工智能领域,模型上下文协议(ModelContextProtocol,简称MCP)作为一种标准化的协议,为大型语言模型(LLM)提供了丰富的上下文和工具支持。而FastMCP作为构建MCP服务器和客户端的Python框架,以其简洁的API设计、高效的开发体验以及强大的扩展能力,正逐渐成为开发者们的首选工具。一、FastMCP简介FastMCP是一个用于构建MCP服务器和客户端的Python框架
- “易问易视”——让数据分析像聊天一样简单
二十十十十十
数据分析数据挖掘
一、项目简介“易问易视”通过自然语言理解和大语言模型技术,将用户的中文查询自动转化为数据处理指令,实现无代码的数据检索与图表生成。你只要在大屏上输入一句话,比如“2024年每月有多少人出境”,它就能自动看懂你要查的时间、指标、维度,然后在后台用Pandas和NumPy把国家统计局或行业CSV里的数据清洗、筛选、聚合好,再用Matplotlib、Plotly画出柱状图、折线图、饼图甚至地图,最后在S
- 大语言模型LLM | 一文了解dify的工作流的两种模式(Chatflow对话流与Workflow自动化流)
大模型本地部署_
语言模型microsoftAI大模型人工智能LLM大模型入门Dify
摘要:在AI应用开发领域,如何让大语言模型(LLM)高效处理复杂任务一直是核心课题。Dify创新性地推出两种工作流形态——Chatflow对话流与Workflow自动化流,如同两把利刃,分别破解对话交互与批量处理的难题。本文将从技术特性、应用场景到核心差异,带您全面解锁Dify工作流的双重魔力。一、Chatflow对话流:让交互更智能的「对话大脑」1、对话场景的专属引擎Chatflow专为实时交互
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p