本文并不很详细地分析初始化的各个细节,而重点分析如何将底层操作关联到event_base的相关字段。初始化工作主要是针对event_base的。libevent2支持多种底层实现,有epoll, select, iocp等。下面的工作主要是以熟悉的select作为底层实现,分析libevent2的工作机理。
event_base的结构片断如下:
struct event_base {
/** Function pointers and other data to describe this event_base's
* backend. */
/// 保存底层操作的抽象对象(实际上是IO操作)
const struct eventop *evsel;
/** Pointer to backend-specific data. */
/// 保存底层操作对象要操作的对象
void *evbase;
...
}
不管底层操作是 select 还是 epoll 还是其它。都被抽象成下面的几个操作: init, add, del, dispatch...
struct eventop {
const char *name;
void *(*init)(struct event_base *);
int (*add)(struct event_base *, evutil_socket_t fd, short old, short events, void *fdinfo);
int (*del)(struct event_base *, evutil_socket_t fd, short old, short events, void *fdinfo);
int (*dispatch)(struct event_base *, struct timeval *);
void (*dealloc)(struct event_base *);
int need_reinit;
enum event_method_feature features;
size_t fdinfo_len;
};
基于 select 操作是如何初始化 const struct eventop *evsel 这个变量的?
1. select.c 中定义了一个 eventop 类型的static变量。
const struct eventop selectops = {
"select",
select_init,
select_add,
select_del,
select_dispatch,
select_dealloc,
0, /* doesn't need reinit. */
EV_FEATURE_FDS,
0,
};
这样selectops的init就指向select_init, add指向select_add...
2. 将selectops注册到 eventops 这个数组中,作为底层操作的一个选项。数组中,位于前面的数据具有优先选择权。可以看到,select作为一个不被推荐的方式放到了倒数第二的位置。但这并不妨碍我们使用select这个熟悉的方式来分析libevent2的运行机制。
[event.c]
/* Array of backends in order of preference. */
static const struct eventop *eventops[] = {
#ifdef _EVENT_HAVE_EVENT_PORTS
&evportops,
#endif
#ifdef _EVENT_HAVE_WORKING_KQUEUE
&kqops,
#endif
#ifdef _EVENT_HAVE_EPOLL
&epollops,
#endif
#ifdef _EVENT_HAVE_DEVPOLL
&devpollops,
#endif
#ifdef _EVENT_HAVE_POLL
&pollops,
#endif
#ifdef _EVENT_HAVE_SELECT
&selectops,
#endif
#ifdef WIN32
&win32ops,
#endif
NULL
};
3. 那么在哪里将 eventops 给event_base.evsel 赋值呢?赋赋值操作的前面和后面做了些什么呢?
这是在创建event_base做的事情。且看 event_base_new_with_config函数的实现。
[event.c]
struct event_base * event_base_new_with_config(const struct event_config *cfg)
{
...
for (i = 0; eventops[i] && !base->evbase; i++) {
...
base->evsel = eventops[i];
base->evbase = base->evsel->init(base);
}
...
}
可见是将数组中的第1个有效的记录赋值给了 base->evsel, 作为底层的实现。同时调用了 init 函数,将返回的操作数据传递给了 base->evbase.
event_base_new() 的内部调用了 event_base_new_with_config.
再深入地跟踪一下 init 函数。看它做了些什么,返回了些什么。select 模型对应的 init 是 select_init.
[select.c]
static void *
select_init(struct event_base *base)
{
struct selectop *sop;
if (!(sop = mm_calloc(1, sizeof(struct selectop))))
return (NULL);
if (select_resize(sop, SELECT_ALLOC_SIZE(32 + 1))) {
select_free_selectop(sop);
return (NULL);
}
evsig_init(base);
return (sop);
}
struct selectop {
int event_fds; /* Highest fd in fd set */
int event_fdsz;
int resize_out_sets;
fd_set *event_readset_in;
fd_set *event_writeset_in;
fd_set *event_readset_out;
fd_set *event_writeset_out;
};
可见初始化并返回了一个struct selectop类型的指针。一般的思路是通过 calloc(和malloc类似)申请一段内存,再调用evsig_init初始化信号的底层实现。那么调用 select_resize 干什么呢?看一下 struct selectop的结构,后面的四个指针指向的内存还没有初始化呢,select_resize就是初始化这些指针,让它指向一个fd_set的数组。数组的大小是多少字节呢?这个由宏 SELECT_ALLOC_SIZE(32 + 1) 计算。这个宏的参数 32 + 1 即为数组的长度,根据select的规则,32为有效的长度。这些描述表明,读取队列的初始长度是32.