event_base是整个libevent的核心,它持有所有注册的事件,并负责通知激活的事件。在event-internal.h中。
struct event_base {
const struct eventop *evsel;
void *evbase;
int event_count; /* counts number of total events */
int event_count_active; /* counts number of active events */
int event_gotterm; /* Set to terminate loop */
int event_break; /* Set to terminate loop immediately */
/* active event management */
struct event_list **activequeues;
int nactivequeues;
/* signal handling info */
struct evsignal_info sig;
struct event_list eventqueue;
struct timeval event_tv;
struct min_heap timeheap;
struct timeval tv_cache;
};
下面详细解释一下结构体中各字段的含义。
1)evsel 记录了初始化Reactor时选择 event_base 的一种后端I/O复用机制。event_top里面是函数指针,具体操作为IO复用的一些操作。在event-internal.h中。
struct eventop {
const char *name;
void *(*init)(struct event_base *); //初始化
int (*add)(void *, struct event *); //添加事件
int (*del)(void *, struct event *); //删除事件
int (*dispatch)(struct event_base *, void *, struct timeval *); //处理
void (*dealloc)(struct event_base *, void *); //注销,释放资源
/* set if we need to reinitialize the event base */
int need_reinit;
};
这些具体的操作是select、poll、epoll等,以epoll初始化eventtop结构为例(在epoll.c中)。static void *epoll_init (struct event_base *);
static int epoll_add (void *, struct event *);
static int epoll_del (void *, struct event *);
static int epoll_dispatch (struct event_base *, void *, struct timeval *);
static void epoll_dealloc (struct event_base *, void *);
const struct eventop epollops = {
"epoll",
epoll_init,
epoll_add,
epoll_del,
epoll_dispatch,
epoll_dealloc,
1 /* need reinit */
};
而给evsel 赋值时是在event.c中:首先使用extern const struct eventop epollops,将epoll.c中定义的epollops包含进来,然后进行赋值。(event.c中)
#ifdef HAVE_EVENT_PORTS
extern const struct eventop evportops;
#endif
#ifdef HAVE_SELECT
extern const struct eventop selectops;
#endif
#ifdef HAVE_POLL
extern const struct eventop pollops;
#endif
#ifdef HAVE_EPOLL
extern const struct eventop epollops;
#endif
#ifdef HAVE_WORKING_KQUEUE
extern const struct eventop kqops;
#endif
#ifdef HAVE_DEVPOLL
extern const struct eventop devpollops;
#endif
#ifdef WIN32
extern const struct eventop win32ops;
#endif
/* In order of preference */
static const struct eventop *eventops[] = {
#ifdef HAVE_EVENT_PORTS
&evportops,
#endif
#ifdef HAVE_WORKING_KQUEUE
&kqops,
#endif
#ifdef HAVE_EPOLL
&epollops,
#endif
#ifdef HAVE_DEVPOLL
&devpollops,
#endif
#ifdef HAVE_POLL
&pollops,
#endif
#ifdef HAVE_SELECT
&selectops,
#endif
#ifdef WIN32
&win32ops,
#endif
NULL
};
通过在event_base_new函数中赋值。现在evsel指向使用epoll机制的结构体struct eventop。
base->evbase = NULL;
for (i = 0; eventops[i] && !base->evbase; i++) {
base->evsel = eventops[i];
2)evbase是void指针,它用来保存IO复用的数据,指向一个数据结构。因为Libevent是跨平台的,所以数据结构不定,因此是void类型指针。
3)activequeues是一个二级指针,libevent支持事件优先级,因此你可以把它看作是数组,其中的元素activequeues[priority]是一个链表,链表的每个节点指向一个优先级为priority的就绪事件event。
4)nactivequeues,就绪事件数组的大小,即该event_base一共有nactivequeues个不同优先级的就绪事件数组。
5)eventqueue,链表,保存了所有的注册事件event的指针。
6)sig是由来管理信号的结构体。
7)timeheap是管理定时事件的小根堆。
8)event_tv和tv_cache是libevent用于时间管理的变量。
创建一个event_base对象也既是创建了一个新的libevent实例,程序需要通过调用event_init()(内部调用event_base_new函数执行具体操作)函数来创建,该函数同时还对新生成的libevent实例进行了初始化。
struct event_base *event_init(void)
{
struct event_base *base = event_base_new();
if (base != NULL)
current_base = base;
return (base);
}
该函数首先为event_base实例申请空间,然后初始化timer mini-heap,选择并初始化合适的系统I/O 的demultiplexer机制,初始化各事件链表;
struct event_base *event_base_new(void)
{
int i;
struct event_base *base;
if ((base = calloc(1, sizeof(struct event_base))) == NULL) //为event_base分配内存,初始化为0
event_err(1, "%s: calloc", __func__);
event_sigcb = NULL;
event_gotsig = 0;
detect_monotonic();
gettime(base, &base->event_tv);
min_heap_ctor(&base->timeheap);
TAILQ_INIT(&base->eventqueue); //初始化注册事件的队列
base->sig.ev_signal_pair[0] = -1;
base->sig.ev_signal_pair[1] = -1;
base->evbase = NULL;
for (i = 0; eventops[i] && !base->evbase; i++) { //选择某种I/O复用机制
base->evsel = eventops[i];
base->evbase = base->evsel->init(base); //返回该I/O复用机制存储的数据
}
if (base->evbase == NULL)
event_errx(1, "%s: no event mechanism available", __func__);
if (evutil_getenv("EVENT_SHOW_METHOD"))
event_msgx("libevent using: %s\n",
base->evsel->name);
/* allocate a single active event queue */
event_base_priority_init(base, 1); //初始化就绪事件队列
return (base);
}
而初始化就绪队列函数event_base_priority_init:
int event_base_priority_init(struct event_base *base, int npriorities)
{
int i;
if (base->event_count_active)
return (-1);
if (npriorities == base->nactivequeues)
return (0);
if (base->nactivequeues) {
for (i = 0; i < base->nactivequeues; ++i) {
free(base->activequeues[i]);
}
free(base->activequeues);
}
/* Allocate our priority queues */
base->nactivequeues = npriorities;
base->activequeues = (struct event_list **)
calloc(base->nactivequeues, sizeof(struct event_list *));
if (base->activequeues == NULL)
event_err(1, "%s: calloc", __func__);
for (i = 0; i < base->nactivequeues; ++i) {
base->activequeues[i] = malloc(sizeof(struct event_list));
if (base->activequeues[i] == NULL)
event_err(1, "%s: malloc", __func__);
TAILQ_INIT(base->activequeues[i]);
}
return (0);
}
三、几个接口函数
前面提到Reactor框架的作用就是提供事件的注册、注销接口;根据系统提供的事件多路分发机制执行事件循环,当有事件进入“就绪”状态时,调用注册事件的回调函数来处理事件。
Libevent中对应的接口函数主要就是:
int event_add(struct event *ev, const struct timeval *timeout);
int event_del(struct event *ev);
int event_base_loop(struct event_base *base, int loops);
void event_active(struct event *event, int res, short events);
void event_process_active(struct event_base *base);
对于定时事件,这些函数将调用timer heap管理接口执行插入和删除操作;对于I/O和Signal事件将调用eventopadd和delete接口函数执行插入和删除操作(eventop会对Signal事件调用Signal处理接口执行操作)。
1) 注册事件
函数原型:
int event_add(struct event *ev, const struct timeval *tv)
ev:指向要注册的事件;
tv:超时时间;
函数将ev注册到ev->ev_base上,事件类型由ev->ev_events指明,如果注册成功,ev将被插入到已注册链表中;如果tv不是NULL,则会同时注册定时事件,将ev添加到timer堆上;
如果其中有一步操作失败,那么函数保证没有事件会被注册,可以讲这相当于一个原子操作。这个函数也体现了libevent细节之处的巧妙设计,且仔细看程序代码,部分有省略,注释直接附在代码中。
int
event_add(struct event *ev, const struct timeval *tv)
{
struct event_base *base = ev->ev_base; // 要注册到的event_base
const struct eventop *evsel = base->evsel; // base使用的系统I/O策略
void *evbase = base->evbase;
int res = 0;
event_debug((
"event_add: event: %p, %s%s%scall %p",
ev,
ev->ev_events & EV_READ ? "EV_READ " : " ",
ev->ev_events & EV_WRITE ? "EV_WRITE " : " ",
tv ? "EV_TIMEOUT " : " ",
ev->ev_callback));
assert(!(ev->ev_flags & ~EVLIST_ALL));
// 新的timer事件,调用timer heap接口在堆上预留一个位置
// 注:这样能保证该操作的原子性:
// 向系统I/O机制注册可能会失败,而当在堆上预留成功后,
// 定时事件的添加将肯定不会失败;
// 而预留位置的可能结果是堆扩充,但是内部元素并不会改变
if (tv != NULL && !(ev->ev_flags & EVLIST_TIMEOUT)) {
if (min_heap_reserve(&base->timeheap,
1 + min_heap_size(&base->timeheap)) == -1)
return (-1); /* ENOMEM == errno */
}
// 如果事件ev不在已注册或者激活链表中,则调用evbase注册事件
if ((ev->ev_events & (EV_READ|EV_WRITE|EV_SIGNAL)) &&
!(ev->ev_flags & (EVLIST_INSERTED|EVLIST_ACTIVE))) {
res = evsel->add(evbase, ev);
if (res != -1)
event_queue_insert(base, ev, EVLIST_INSERTED);
}
// 准备添加定时事件
if (res != -1 && tv != NULL) {
struct timeval now;
// EVLIST_TIMEOUT表明event已经在定时器堆中了,删除旧的
if (ev->ev_flags & EVLIST_TIMEOUT)
event_queue_remove(base, ev, EVLIST_TIMEOUT);
// 如果事件已经是就绪状态则从激活链表中删除
if ((ev->ev_flags & EVLIST_ACTIVE) &&
(ev->ev_res & EV_TIMEOUT)) {
// 将ev_callback调用次数设置为0
if (ev->ev_ncalls && ev->ev_pncalls) {
/* Abort loop */
*ev->ev_pncalls = 0;
}
event_queue_remove(base, ev, EVLIST_ACTIVE);
}
// 计算时间,并插入到timer小根堆中
gettime(base, &now);
evutil_timeradd(&now, tv, &ev->ev_timeout);
event_debug((
"event_add: timeout in %ld seconds, call %p",
tv->tv_sec, ev->ev_callback));
event_queue_insert(base, ev, EVLIST_TIMEOUT);
}
return (res);
}
event_queue_insert()负责将事件插入到对应的链表中,下面是程序代码;
event_queue_remove()负责将事件从对应的链表中删除,这里就不再重复贴代码了;
void
event_queue_insert(struct event_base *base, struct event *ev, int queue)
{
if (ev->ev_flags & queue) { // ev可能已经在激活列表中了,避免重复插入
/* Double insertion is possible for active events */
if (queue & EVLIST_ACTIVE)
return;
event_errx(1, "%s: %p(fd %d) already on queue %x", __func__,
ev, ev->ev_fd, queue);
}
if (~ev->ev_flags & EVLIST_INTERNAL)
base->event_count++;
ev->ev_flags |= queue; // 记录queue标记
switch (queue) {
case EVLIST_INSERTED: // I/O或Signal事件,加入已注册事件链表
TAILQ_INSERT_TAIL(&base->eventqueue, ev, ev_next);
break;
case EVLIST_ACTIVE: // 就绪事件,加入激活链表
base->event_count_active++;
TAILQ_INSERT_TAIL(base->activequeues[ev->ev_pri],
ev,ev_active_next);
break;
case EVLIST_TIMEOUT: { // 定时事件,加入堆
min_heap_push(&base->timeheap, ev);
break;
}
default:
event_errx(1, "%s: unknown queue %x", __func__, queue);
}
}
2) 删除事件
函数原型为:
int event_del(struct event *ev);
该函数将删除事件ev,对于I/O事件,从I/O 的demultiplexer上将事件注销;对于Signal事件,将从Signal事件链表中删除;对于定时事件,将从堆上删除;
同样删除事件的操作则不一定是原子的,比如删除时间事件之后,有可能从系统I/O机制中注销会失败。
int
event_del(struct event *ev)
{
struct event_base *base;
const struct eventop *evsel;
void *evbase;
event_debug(("event_del: %p, callback %p",
ev, ev->ev_callback));
// ev_base为NULL,表明ev没有被注册
if (ev->ev_base == NULL)
return (-1);
// 取得ev注册的event_base和eventop指针
base = ev->ev_base;
evsel = base->evsel;
evbase = base->evbase;
assert(!(ev->ev_flags & ~EVLIST_ALL));
// 将ev_callback调用次数设置为
if (ev->ev_ncalls && ev->ev_pncalls) {
/* Abort loop */
*ev->ev_pncalls = 0;
}
// 从对应的链表中删除
if (ev->ev_flags & EVLIST_TIMEOUT)
event_queue_remove(base, ev, EVLIST_TIMEOUT);
if (ev->ev_flags & EVLIST_ACTIVE)
event_queue_remove(base, ev, EVLIST_ACTIVE);
if (ev->ev_flags & EVLIST_INSERTED) { // EVLIST_INSERTED表明是I/O或者Signal事件,需要调用I/O demultiplexer注销事件
event_queue_remove(base, ev, EVLIST_INSERTED);
return (evsel->del(evbase, ev));
}
return (0);
}