CoroutineContext是协程的上下文,它的使用场景很多。
1.CoroutineScope的launch扩展函数的第一个参数就是CoroutineContext,默认值是EmptyCoroutineContext。
public fun CoroutineScope.launch(
context: CoroutineContext = EmptyCoroutineContext,
start: CoroutineStart = CoroutineStart.DEFAULT,
block: suspend CoroutineScope.() -> Unit
): Job {
......
}
2.withContext() 函数的参数中也有CoroutineContext。
public suspend fun withContext(
context: CoroutineContext,
block: suspend CoroutineScope.() -> T
): T {
......
}
suspend fun getUserInfo(): String {
printCoroutine("Before IO Context")
withContext(Dispatchers.IO) {
printCoroutine("In IO Context")
delay(1000L)
}
printCoroutine("After IO Context")
return "David"
}
runBlocking {
val userInfo = getUserInfo()
printCoroutine(userInfo)
}
fun printCoroutine(any: Any?) {
println("" + any + ";Thread:" + Thread.currentThread().name)
}
Log:
Before IO Context;Thread:main @coroutine#1
In IO Context;Thread:DefaultDispatcher-worker-1 @coroutine#1
After IO Context;Thread:main @coroutine#1
David;Thread:main @coroutine#1
withContext() 指定Dispatchers.IO以后,Lambda 当中的代码就会被分发到 DefaultDispatcher 线程池中去执行,而它外部的所有代码仍然还是运行在 main 线程上。
在runBlocking中传入Dispatchers.IO,则所有的代码都运行在 DefaultDispatcher 这个线程池当中了。
runBlocking(Dispatchers.IO) {
val userInfo = getUserInfo()
printCoroutine(userInfo)
}
suspend fun getUserInfo(): String {
printCoroutine("Before IO Context")
withContext(Dispatchers.IO) {
printCoroutine("In IO Context")
delay(1000L)
}
printCoroutine("After IO Context")
return "David"
}
Log:
Before IO Context;Thread:DefaultDispatcher-worker-1 @coroutine#1
In IO Context;Thread:DefaultDispatcher-worker-1 @coroutine#1
After IO Context;Thread:DefaultDispatcher-worker-1 @coroutine#1
David;Thread:DefaultDispatcher-worker-1 @coroutine#1
3.内置 Dispatcher
Dispatchers.Main 在 UI 编程平台才有意义,比如Android的Main线程。
Dispatchers.Unconfined 可能运行在任意线程之上。
Dispatchers.Default 用于CPU 密集型任务的线程池。一般来说,它内部的线程个数是与机器 CPU 核心数量保持一致的,不过它有一个最小限制 2。
Dispatchers.IO 用于 IO 密集型任务的线程池。具体线程的数量可以通过参数来配置:kotlinx.coroutines.io.parallelism。
注意:Dispatchers.IO 底层是可能复用 Dispatchers.Default 当中的线程的。
suspend fun getUserInfo(): String {
printCoroutine("Before IO Context")
withContext(Dispatchers.IO) {
printCoroutine("In IO Context")
delay(1000L)
}
printCoroutine("After IO Context")
return "David"
}
runBlocking(Dispatchers.Default) {
val userInfo = getUserInfo()
printCoroutine(userInfo)
}
Log:
Before IO Context;Thread:DefaultDispatcher-worker-1 @coroutine#1
In IO Context;Thread:DefaultDispatcher-worker-2 @coroutine#1
After IO Context;Thread:DefaultDispatcher-worker-2 @coroutine#1
David;Thread:DefaultDispatcher-worker-2 @coroutine#1
Dispatchers.Default 线程池当中有富余线程的时候,它是可以被 IO 线程池复用的。Dispatchers.Default 被 Dispatchers.IO 复用线程导致的。
4.使用自定义Dispatcher
runBlocking(mySingleDispatcher) {
val userInfo = getUserInfo()
printCoroutine(userInfo)
}
val mySingleDispatcher = Executors.newSingleThreadExecutor {
Thread(it, "MySingleThread").apply {
isDaemon = true
}
}.asCoroutineDispatcher()
suspend fun getUserInfo(): String {
printCoroutine("Before IO Context")
withContext(Dispatchers.IO) {
printCoroutine("In IO Context")
delay(1000L)
}
printCoroutine("After IO Context")
return "David"
}
Log:
Before IO Context;Thread:MySingleThread @coroutine#1
In IO Context;Thread:DefaultDispatcher-worker-1 @coroutine#1
After IO Context;Thread:MySingleThread @coroutine#1
David;Thread:MySingleThread @coroutine#1
通过 asCoroutineDispatcher() 扩展函数,创建了一个 Dispatcher。Dispatcher 的本质仍然还是线程,协程运行在线程之上。当为 runBlocking 传入自定义的 mySingleDispatcher 以后,由于它底层只有一个线程,因此只有“In IO Context”是运行在 DefaultDispatcher 这个线程池的,其他代码都运行在 mySingleDispatcher 之上。
public fun CoroutineScope.launch(
context: CoroutineContext = EmptyCoroutineContext,
start: CoroutineStart = CoroutineStart.DEFAULT,
block: suspend CoroutineScope.() -> Unit
): Job {
......
}
public interface CoroutineScope {
public val coroutineContext: CoroutineContext
}
CoroutineScope是一个接口,而这个接口只有唯一的成员,就是 CoroutineContext。所以,CoroutineScope 只是对 CoroutineContext 做了一层封装而已,它的核心能力其实都来自于 CoroutineContext。
CoroutineScope 的作用:可以方便我们批量控制协程。
runBlocking {
val scope = CoroutineScope(Job())
scope.launch {
printCoroutine("First start!")
delay(1000L)
printCoroutine("First End!")
}
scope.launch {
printCoroutine("Second start!")
delay(1000L)
printCoroutine("Second End!")
}
scope.launch {
printCoroutine("Third start!")
delay(1000L)
printCoroutine("Third End!")
}
delay(500L)
scope.cancel()
delay(1000L)
}
Log:
First start!;Thread:DefaultDispatcher-worker-1 @coroutine#2
Second start!;Thread:DefaultDispatcher-worker-2 @coroutine#3
Third start!;Thread:DefaultDispatcher-worker-3 @coroutine#4
Job 继承自 CoroutineContext.Element,而 CoroutineContext.Element 继承自 CoroutineContext,Job 是间接继承自 CoroutineContext 的。所以说,Job 就是一个 CoroutineContext。
public interface Job : CoroutineContext.Element {
}
public interface CoroutineContext {
public interface Element : CoroutineContext {
}
}
CoroutineContext 本身的接口设计:
@SinceKotlin("1.3")
public interface CoroutineContext {
public operator fun get(key: Key): E?
public fun fold(initial: R, operation: (R, Element) -> R): R
public operator fun plus(context: CoroutineContext): CoroutineContext =
if (context === EmptyCoroutineContext) this else // fast path -- avoid lambda creation
context.fold(this) { acc, element ->
val removed = acc.minusKey(element.key)
if (removed === EmptyCoroutineContext) element else {
// make sure interceptor is always last in the context (and thus is fast to get when present)
val interceptor = removed[ContinuationInterceptor]
if (interceptor == null) CombinedContext(removed, element) else {
val left = removed.minusKey(ContinuationInterceptor)
if (left === EmptyCoroutineContext) CombinedContext(element, interceptor) else
CombinedContext(CombinedContext(left, element), interceptor)
}
}
}
public fun minusKey(key: Key<*>): CoroutineContext
public interface Key
public interface Element : CoroutineContext {
public val key: Key<*>
public override operator fun get(key: Key): E? =
@Suppress("UNCHECKED_CAST")
if (this.key == key) this as E else null
public override fun fold(initial: R, operation: (R, Element) -> R): R =
operation(initial, this)
public override fun minusKey(key: Key<*>): CoroutineContext =
if (this.key == key) EmptyCoroutineContext else this
}
}
从get()、plus()、minusKey()、fold() 看CoroutineContext 的接口设计,和 Map 十分类似。可以把 CoroutineContext 当作 Map 来用。
runBlocking {
val scope = CoroutineScope(Job() + mySingleDispatcher)
scope.launch {
printCoroutine(coroutineContext[CoroutineDispatcher] == mySingleDispatcher)
delay(1000L)
printCoroutine("First end!")
}
delay(500L)
scope.cancel()
delay(1000L)
}
Log:
true;Thread:MySingleThread @coroutine#2
使用了“Job() + mySingleDispatcher”这样的方式创建 CoroutineScope, CoroutineContext 的 plus() 进行了操作符重载。
public operator fun plus(key: Key): E?
public operator fun plus(key: Key): E?
创建出 scope 以后,后续创建的协程就全部都运行在 mySingleDispatcher 这个线程之上了。
public actual object Dispatchers {
public actual val Default: CoroutineDispatcher = DefaultScheduler
public actual val Main: MainCoroutineDispatcher get() = MainDispatcherLoader.dispatcher
public actual val Unconfined: CoroutineDispatcher = kotlinx.coroutines.Unconfined
public val IO: CoroutineDispatcher = DefaultIoScheduler
public fun shutdown() { }
}
public abstract class CoroutineDispatcher :
AbstractCoroutineContextElement(ContinuationInterceptor), ContinuationInterceptor {}
public interface ContinuationInterceptor : CoroutineContext.Element {}
Dispatchers 其实是一个 object 单例,它的内部成员的类型是 CoroutineDispatcher,而它又是继承自 ContinuationInterceptor,这个类则是实现了 CoroutineContext.Element 接口。由此可见,Dispatcher 确实就是 CoroutineContext。
runBlocking {
val scope = CoroutineScope(Job() + mySingleDispatcher)
scope.launch(CoroutineName("MyFirstCoroutine!")) {
printCoroutine(coroutineContext[CoroutineDispatcher] == mySingleDispatcher)
delay(1000L)
printCoroutine("First end!")
}
delay(500L)
scope.cancel()
delay(1000L)
}
true;Thread:MySingleThread @MyFirstCoroutine!#2
调用 launch 的时候,传入了“CoroutineName(“MyFirstCoroutine!”)”作为协程的名字,得到了“@MyFirstCoroutine!#2”这样的输出。
CoroutineExceptionHandler 的 handleException() 可以自定义异常处理器。
public interface CoroutineExceptionHandler : CoroutineContext.Element {
public companion object Key : CoroutineContext.Key
public fun handleException(context: CoroutineContext, exception: Throwable)
}
runBlocking {
val myExceptionHandler = CoroutineExceptionHandler{_,throwable->
println("Catch exception: $throwable")
}
val scope = CoroutineScope(Job()+ mySingleDispatcher)
val job = scope.launch(myExceptionHandler) {
val s: String? = null
s!!.length
}
job.join()
}
Catch exception: java.lang.NullPointerException