高斯拉普拉斯算子

        Laplace算子作为一种优秀的边缘检测算子,在边缘检测中得到了广泛的应用。该方法通过对图像求图像的二阶倒数的零交叉点来实现边缘的检测,公式表示如下:

由于Laplace算子是通过对图像进行微分操作实现边缘检测的,所以对离散点和噪声比较敏感。于是,首先对图像进行高斯卷积滤波进行降噪处理,再采用Laplace算子进行边缘检测,就可以提高算子对噪声和离散点的鲁棒性,如此,拉普拉斯高斯算子Log(Laplace of Gaussian)就诞生了。

          高斯卷积(Gaussian convolution ),高斯函数的表达式如下:

高斯拉普拉斯算子_第1张图片

原图像与高斯卷积的表达式如下:

因为:

所以Log可以通过先对高斯函数进行偏导操作,然后进行卷积求解,公式表示如下:

高斯拉普拉斯算子_第2张图片

         2D高斯拉普拉斯算子可以通过任何一个方形核进行逼近,只要保证该核的所有元素的和或均值为0,如下一个5×5的核进行逼近:

高斯拉普拉斯算子_第3张图片

          高斯拉普拉斯边缘检测算法的步骤:

         1)对原图像进行Log卷积。

         2)检测图像中的过零点( Zero Crossings,也即从负到正或从正到负)。

         3)对过零点进行阈值化。

更多信息参考:

1、Laplacian of Gaussian (LoG):http://fourier.eng.hmc.edu/e161/lectures/gradient/node9.html

2、Laplacian/Laplacian of Gaussian:http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm
————————————————
版权声明:本文为CSDN博主「Belial_2010」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kezunhai/article/details/11579785

你可能感兴趣的:(LOG,高斯拉普拉斯算子)