R3LIVE源码解析(10) — R3LIVE中r3live_vio.cpp文件

目录

1 r3live_vio.cpp简介

2 r3live_vio.cpp源码解析


1 r3live_vio.cpp简介

R3LIVE主要的公式推导在VIO上,所以我们来细细的分析这部分的功能。R3LIVE将VIO分成了两步,一是直接通过帧间的光流来追踪地图点,并且通过最小化追踪到的地图点的PNP投影误差来获取系统状态;二是通过这些地图点的出现的帧到地图的光度误差来优化状态。

 

2 r3live_vio.cpp源码解析

首先r3live_vio.cpp中,我们会先通过一个线程来获取图像的信息

void R3LIVE::image_comp_callback( const sensor_msgs::CompressedImageConstPtr &msg )
{
    std::unique_lock< std::mutex > lock2( mutex_image_callback );
    if ( sub_image_typed == 1 )
    {
        return; // Avoid subscribe the same image twice.
    }
    sub_image_typed = 2;
    g_received_compressed_img_msg.push_back( msg );
    
    // 如果是第一次收到图片,则启动一个线程
    if ( g_flag_if_first_rec_img )
    {
        g_flag_if_first_rec_img = 0;
        // 通过线程池k方法调用service_process_img_buffer函数来处理图像
        // 内部其实在循环调用process_image()函数
        m_thread_pool_ptr->commit_task( &R3LIVE::service_process_img_buffer, this );
    }
    return;
}

// ANCHOR - image_callback
void R3LIVE::image_callback( const sensor_msgs::ImageConstPtr &msg )
{
    std::unique_lock< std::mutex > lock( mutex_image_callback );
    if ( sub_image_typed == 2 )
    {
        return; // Avoid subscribe the same image twice.
    }
    sub_image_typed = 1;

    // 与上面的函数相同
    if ( g_flag_if_first_rec_img )
    {
        g_flag_if_first_rec_img = 0;
        m_thread_pool_ptr->commit_task( &R3LIVE::service_process_img_buffer, this );
    }

    // 将图像消息转opencv格式
    cv::Mat temp_img = cv_bridge::toCvCopy( msg, sensor_msgs::image_encodings::BGR8 )->image.clone();
    // 图像预处理,然后保存到m_queue_image_with_pose队列
    process_image( temp_img, msg->header.stamp.toSec() );
}

 这里面通过 m_thread_pool_ptr->commit_task线程池的方式完成了图像buffer的压入与处理。在这个函数的末尾,会调用process_image函数

void R3LIVE::service_process_img_buffer()
{
    while ( 1 )
    {
        // To avoid uncompress so much image buffer, reducing the use of memory.
        // 如果m_queue_image_with_pose队列内的数据>4,表示这些数据还没被处理,暂时挂起预处理线程(丢一些数据)
        if ( m_queue_image_with_pose.size() > 4 )
        {
            while ( m_queue_image_with_pose.size() > 4 )
            {
                ros::spinOnce();
                std::this_thread::sleep_for( std::chrono::milliseconds( 2 ) );
                std::this_thread::yield();
            }
        }
        cv::Mat image_get;
        double  img_rec_time;
        
        // sub_image_typed == 2,表示接收的是压缩图像格式 
        if ( sub_image_typed == 2 )
        {
            // 如果队列中没有数据,暂停当前线程1s,以减少CPU的使用
            while ( g_received_compressed_img_msg.size() == 0 )
            {
                ros::spinOnce();
                std::this_thread::sleep_for( std::chrono::milliseconds( 1 ) );
                std::this_thread::yield();
            }
            // 从队列的前端获取一个压缩图像消息msg
            sensor_msgs::CompressedImageConstPtr msg = g_received_compressed_img_msg.front();
            try
            {
                // 将压缩图像消息转换为cv::Mat类型的图像数据
                cv_bridge::CvImagePtr cv_ptr_compressed = cv_bridge::toCvCopy( msg, sensor_msgs::image_encodings::BGR8 );
                // 存储获取的时间和图像
                img_rec_time = msg->header.stamp.toSec();
                image_get = cv_ptr_compressed->image;
                // 释放内存
                cv_ptr_compressed->image.release();
            }
            catch ( cv_bridge::Exception &e )
            {
                printf( "Could not convert from '%s' to 'bgr8' !!! ", msg->format.c_str() );
            }
            mutex_image_callback.lock();
            g_received_compressed_img_msg.pop_front();
            mutex_image_callback.unlock();
        }
        else
        {
            // 如果队列中没有数据,暂停当前线程1s,以减少CPU的使用
            while ( g_received_img_msg.size() == 0 )
            {
                ros::spinOnce();
                std::this_thread::sleep_for( std::chrono::milliseconds( 1 ) );
                std::this_thread::yield();
            }
            // 与前面的流程类似,区别在于需要将接受的最前的图像pop
            sensor_msgs::ImageConstPtr msg = g_received_img_msg.front();
            image_get = cv_bridge::toCvCopy( msg, sensor_msgs::image_encodings::BGR8 )->image.clone();
            img_rec_time = msg->header.stamp.toSec();
            mutex_image_callback.lock();
            g_received_img_msg.pop_front();
            mutex_image_callback.unlock();
        }
        process_image( image_get, img_rec_time );
    }
}

process_image函数主要做了三件事情,分别是检测时间戳,初始化参数,并启动service_pub_rgb_mapsservice_VIO_update线程,以及去畸变与图像处理。

void R3LIVE::process_image( cv::Mat &temp_img, double msg_time )
{
    cv::Mat img_get;

    // 检测图像rows是否正常
    if ( temp_img.rows == 0 )
    {
        cout << "Process image error, image rows =0 " << endl;
        return;
    }
    // 检查时间戳是否正常
    if ( msg_time < last_accept_time )
    {
        cout << "Error, image time revert!!" << endl;
        return;
    }
    // 频率控制
    if ( ( msg_time - last_accept_time ) < ( 1.0 / m_control_image_freq ) * 0.9 )
    {
        return;
    }
    last_accept_time = msg_time;

    // 如果是第一次运行
    if ( m_camera_start_ros_tim < 0 )
    {
        m_camera_start_ros_tim = msg_time;
        m_vio_scale_factor = m_vio_image_width * m_image_downsample_ratio / temp_img.cols; // 320 * 24
        // load_vio_parameters();
        // 加载vio参数
        set_initial_camera_parameter( g_lio_state, m_camera_intrinsic.data(), m_camera_dist_coeffs.data(), m_camera_ext_R.data(),
                                      m_camera_ext_t.data(), m_vio_scale_factor );
        cv::eigen2cv( g_cam_K, intrinsic );
        cv::eigen2cv( g_cam_dist, dist_coeffs );
        // 初始化畸变
        initUndistortRectifyMap( intrinsic, dist_coeffs, cv::Mat(), intrinsic, cv::Size( m_vio_image_width / m_vio_scale_factor, m_vio_image_heigh / m_vio_scale_factor ),
                                 CV_16SC2, m_ud_map1, m_ud_map2 );
        // 启动两个线程
        m_thread_pool_ptr->commit_task( &R3LIVE::service_pub_rgb_maps, this);
        m_thread_pool_ptr->commit_task( &R3LIVE::service_VIO_update, this);
        // 初始化数据记录器
        m_mvs_recorder.init( g_cam_K, m_vio_image_width / m_vio_scale_factor, &m_map_rgb_pts );
        m_mvs_recorder.set_working_dir( m_map_output_dir );
    }

    if ( m_image_downsample_ratio != 1.0 )
    {
        cv::resize( temp_img, img_get, cv::Size( m_vio_image_width / m_vio_scale_factor, m_vio_image_heigh / m_vio_scale_factor ) );
    }
    else
    {
        img_get = temp_img; // clone ?
    }
    std::shared_ptr< Image_frame > img_pose = std::make_shared< Image_frame >( g_cam_K );
    
    // 是否发布原始img
    if ( m_if_pub_raw_img )
    {
        img_pose->m_raw_img = img_get;
    }
    // 以img_get为输入,进行去畸变,输出到img_pose->m_img
    cv::remap( img_get, img_pose->m_img, m_ud_map1, m_ud_map2, cv::INTER_LINEAR );
    // cv::imshow("sub Img", img_pose->m_img);
    img_pose->m_timestamp = msg_time;
    img_pose->init_cubic_interpolation();   // 转灰度图
    img_pose->image_equalize();      // 直方图均衡化
    m_camera_data_mutex.lock();
    m_queue_image_with_pose.push_back( img_pose );   // 保存到队列
    m_camera_data_mutex.unlock();
    total_frame_count++;

    // 调整buffer数量
    if ( m_queue_image_with_pose.size() > buffer_max_frame )
    {
        buffer_max_frame = m_queue_image_with_pose.size();
    }

    // cout << "Image queue size = " << m_queue_image_with_pose.size() << endl;
}

首在进行前面的图像初始处理后,后面进行VIO的主要的处理函数。先会先默认判断是否收到激光的信息,即收到激光信息才会进入视觉VIO。如果是第一帧图像,则需要等待点云地图中的点数量大于阈值后,再选取active点云投影到图像上,作为初始跟踪点,初始化跟踪器op_track。

cv_keyboard_callback();
// 检查是否收到第一帧激光雷达扫描,没收到,则循环等待
while ( g_camera_lidar_queue.m_if_have_lidar_data == 0 )
{
    ros::spinOnce();
    std::this_thread::sleep_for( std::chrono::milliseconds( THREAD_SLEEP_TIM ) );
    std::this_thread::yield();
    continue;
}

// 检查是否收到预处理后的图像
if ( m_queue_image_with_pose.size() == 0 )
{
    ros::spinOnce();
    std::this_thread::sleep_for( std::chrono::milliseconds( THREAD_SLEEP_TIM ) );
    std::this_thread::yield();
    continue;
}
m_camera_data_mutex.lock();

// 如果m_queue_image_with_pose队列内的缓存数据大于buffer,则将最旧的图像帧用于track,然后pop掉
while ( m_queue_image_with_pose.size() > m_maximum_image_buffer )
{
    cout << ANSI_COLOR_BLUE_BOLD << "=== Pop image! current queue size = " << m_queue_image_with_pose.size() << " ===" << ANSI_COLOR_RESET
            << endl;
    op_track.track_img( m_queue_image_with_pose.front(), -20 );
    m_queue_image_with_pose.pop_front();
}

        
std::shared_ptr< Image_frame > img_pose = m_queue_image_with_pose.front();    
double                             message_time = img_pose->m_timestamp;      
m_queue_image_with_pose.pop_front();
m_camera_data_mutex.unlock();
g_camera_lidar_queue.m_last_visual_time = img_pose->m_timestamp + g_lio_state.td_ext_i2c;

img_pose->set_frame_idx( g_camera_frame_idx );
tim.tic( "Frame" );

if ( g_camera_frame_idx == 0 )
{
    std::vector< cv::Point2f >                pts_2d_vec;       // 选中的地图点反投影到图像上的坐标
    std::vector< std::shared_ptr< RGB_pts > > rgb_pts_vec;      // 选中的地图点
    // while ( ( m_map_rgb_pts.is_busy() ) || ( ( m_map_rgb_pts.m_rgb_pts_vec.size() <= 100 ) ) )
            
    // 检查地图点是否足够,因为LIO模块会调用Global_map::append_points_to_global_map,等待向全局地图添加点
    while ( ( ( m_map_rgb_pts.m_rgb_pts_vec.size() <= 100 ) ) )
    {
        ros::spinOnce();
        std::this_thread::sleep_for( std::chrono::milliseconds( 1 ) );
    }
    // 取此时LIO的状态,并根据外参,设置相机状态
    // 对于第一帧,这里假设是静止的运动状态
    set_image_pose( img_pose, g_lio_state ); // For first frame pose, we suppose that the motion is static.
    // 调用全局地图模块,根据相机状态,选择一些点
    m_map_rgb_pts.selection_points_for_projection( img_pose, &rgb_pts_vec, &pts_2d_vec, m_track_windows_size / m_vio_scale_factor );
    // 初始化跟踪模块
    op_track.init( img_pose, rgb_pts_vec, pts_2d_vec );   //初始化光流
    g_camera_frame_idx++;   //累计影像索引
    continue;
}

接着通过对比相机和lidar队列头的时间戳,如果lidar的时间戳更早则等待lio线程把更早的激光处理完。接着进行预积分部分,通过IMU结合图像的形式完成位置的预积分

g_camera_frame_idx++;
tim.tic( "Wait" );
// if_camera_can_process(): 当雷达有数据,并且lidar buffer中最旧的雷达数据时间 > 当前正在处理的图像时间戳,则返回true, 
while ( g_camera_lidar_queue.if_camera_can_process() == false )
{
    // 否则,在这里循环等待处理雷达数据
    ros::spinOnce();
    std::this_thread::sleep_for( std::chrono::milliseconds( THREAD_SLEEP_TIM ) );
    std::this_thread::yield();
    cv_keyboard_callback();
}
g_cost_time_logger.record( tim, "Wait" );
m_mutex_lio_process.lock();
tim.tic( "Frame" );
tim.tic( "Track_img" );
StatesGroup state_out;
m_cam_measurement_weight = std::max( 0.001, std::min( 5.0 / m_number_of_new_visited_voxel, 0.01 ) );

// body 从LIO预积分到当前帧时刻
if ( vio_preintegration( g_lio_state, state_out, img_pose->m_timestamp + g_lio_state.td_ext_i2c ) == false )
{
    // 如果图像帧时间戳小于当前状态g_lio_state的时间,则出问题了,直接跳过这帧图像
    m_mutex_lio_process.unlock();
    continue;
}
//将从上一LIO预积分的结果,设定为当前帧对应的pose
set_image_pose( img_pose, state_out );

op_track.track_img( img_pose, -20 );
g_cost_time_logger.record( tim, "Track_img" );
// cout << "Track_img cost " << tim.toc( "Track_img" ) << endl;
tim.tic( "Ransac" );
set_image_pose( img_pose, state_out );

下面介绍vio_preintegration预积分函数的详细代码,我们可以看到,在该代码中主要是拿到imu_buffer_vio的图像与IMU数据,并将buffer里面的视觉数据都传入imu_preintegration函数中完成差值的传递,并计算出state_inout的信息。

// ANCHOR - VIO preintegration
bool R3LIVE::vio_preintegration( StatesGroup &state_in, StatesGroup &state_out, double current_frame_time )
{
    state_out = state_in;
    // 检查当前帧的时间是否小于等于上一次更新的时间
    if ( current_frame_time <= state_in.last_update_time )
    {
        // cout << ANSI_COLOR_RED_BOLD << "Error current_frame_time <= state_in.last_update_time | " <<
        // current_frame_time - state_in.last_update_time << ANSI_COLOR_RESET << endl;
        return false;
    }
    mtx_buffer.lock();
    std::deque< sensor_msgs::Imu::ConstPtr > vio_imu_queue;
    // 遍历imu_buffer_vio容器中的元素
    for ( auto it = imu_buffer_vio.begin(); it != imu_buffer_vio.end(); it++ )
    {
        vio_imu_queue.push_back( *it );
        // 如果时间戳大于当前帧的时间,则跳出循环
        if ( ( *it )->header.stamp.toSec() > current_frame_time )
        {
            break;
        }
    }

    // 当imu_buffer_vio容器不为空时执行循环
    while ( !imu_buffer_vio.empty() )
    {
        // 获取imu_buffer_vio容器中第一个元素的时间戳
        double imu_time = imu_buffer_vio.front()->header.stamp.toSec();
        // imu和current_frame_time的时间差
        if ( imu_time < current_frame_time - 0.2 )
        {
            // 将该元素从容器中移除
            imu_buffer_vio.pop_front();
        }
        else
        {
            break;
        }
    }
    // cout << "Current VIO_imu buffer size = " << imu_buffer_vio.size() << endl;
    state_out = m_imu_process->imu_preintegration( state_out, vio_imu_queue, current_frame_time - vio_imu_queue.back()->header.stamp.toSec() );
    // state_out.rot_end的转置矩阵 * state_in.rot_end
    eigen_q q_diff( state_out.rot_end.transpose() * state_in.rot_end );
    // cout << "Pos diff = " << (state_out.pos_end - state_in.pos_end).transpose() << endl;
    // cout << "Euler diff = " << q_diff.angularDistance(eigen_q::Identity()) * 57.3 << endl;
    mtx_buffer.unlock();
    // 更新时间信息
    state_out.last_update_time = current_frame_time;
    return true;
}

下面介绍imu_preintegration预积分函数,我们发现这部分的内容和FAST-LIO2的代码有点相像,但是有不完全一样。所以我们单独抽出来看一下这个函数。首先完成一系列参数的初始化,包含imu加速度acc_imu,平均角速度angvel_avr,速度vel_imu,位置pos_imu。以及imu自身的旋转角,状态转移矩阵F_x,以及协方差cov_w。这一部分其实就是ESIKF的输入转化矩阵。测量更新在主函数中。

// 完成一系列的参数初始化
    Eigen::Vector3d acc_imu( 0, 0, 0 ), angvel_avr( 0, 0, 0 ), acc_avr( 0, 0, 0 ), vel_imu( 0, 0, 0 ), pos_imu( 0, 0, 0 );
    vel_imu = state_inout.vel_end;
    pos_imu = state_inout.pos_end;
    Eigen::Matrix3d R_imu( state_inout.rot_end );
    Eigen::MatrixXd F_x( Eigen::Matrix< double, DIM_OF_STATES, DIM_OF_STATES >::Identity() );   //状态量雅可比
    Eigen::MatrixXd cov_w( Eigen::Matrix< double, DIM_OF_STATES, DIM_OF_STATES >::Zero() );
    double          dt = 0;
    int             if_first_imu = 1;

接下来其实是做了一个中值积分,并计算出两个IMU时刻之间的时间间隔。

接着就是ESIKF的初始化,在R3LIVE中是29个维度的,这29个维度分别代表:全局到imu旋转,全局到imu位置,速度,ba,bg,重力分量,imu到camera旋转,imu到camera位置,激光雷达已经与IMU同步时IMU和摄像机之间的时间偏移,内参。

        /* covariance propagation */
        Eigen::Matrix3d acc_avr_skew;
        Eigen::Matrix3d Exp_f = Exp( angvel_avr, dt );
        acc_avr_skew << SKEW_SYM_MATRIX( acc_avr );
        // Eigen::Matrix3d Jr_omega_dt = right_jacobian_of_rotion_matrix(angvel_avr*dt);
        Eigen::Matrix3d Jr_omega_dt = Eigen::Matrix3d::Identity();
        F_x.block< 3, 3 >( 0, 0 ) = Exp_f.transpose();
        // F_x.block<3, 3>(0, 9) = -Eye3d * dt;
        F_x.block< 3, 3 >( 0, 9 ) = -Jr_omega_dt * dt;
        // F_x.block<3,3>(3,0)  = -R_imu * off_vel_skew * dt;
        F_x.block< 3, 3 >( 3, 3 ) = Eye3d; // Already the identity.
        F_x.block< 3, 3 >( 3, 6 ) = Eye3d * dt;
        F_x.block< 3, 3 >( 6, 0 ) = -R_imu * acc_avr_skew * dt;
        F_x.block< 3, 3 >( 6, 12 ) = -R_imu * dt;
        F_x.block< 3, 3 >( 6, 15 ) = Eye3d * dt;

        Eigen::Matrix3d cov_acc_diag, cov_gyr_diag, cov_omega_diag;
        cov_omega_diag = Eigen::Vector3d( COV_OMEGA_NOISE_DIAG, COV_OMEGA_NOISE_DIAG, COV_OMEGA_NOISE_DIAG ).asDiagonal();
        cov_acc_diag = Eigen::Vector3d( COV_ACC_NOISE_DIAG, COV_ACC_NOISE_DIAG, COV_ACC_NOISE_DIAG ).asDiagonal();
        cov_gyr_diag = Eigen::Vector3d( COV_GYRO_NOISE_DIAG, COV_GYRO_NOISE_DIAG, COV_GYRO_NOISE_DIAG ).asDiagonal();
        // cov_w.block<3, 3>(0, 0) = cov_omega_diag * dt * dt;
        cov_w.block< 3, 3 >( 0, 0 ) = Jr_omega_dt * cov_omega_diag * Jr_omega_dt * dt * dt;
        cov_w.block< 3, 3 >( 3, 3 ) = R_imu * cov_gyr_diag * R_imu.transpose() * dt * dt;
        cov_w.block< 3, 3 >( 6, 6 ) = cov_acc_diag * dt * dt;
        cov_w.block< 3, 3 >( 9, 9 ).diagonal() =
            Eigen::Vector3d( COV_BIAS_GYRO_NOISE_DIAG, COV_BIAS_GYRO_NOISE_DIAG, COV_BIAS_GYRO_NOISE_DIAG ) * dt * dt; // bias gyro covariance
        cov_w.block< 3, 3 >( 12, 12 ).diagonal() =
            Eigen::Vector3d( COV_BIAS_ACC_NOISE_DIAG, COV_BIAS_ACC_NOISE_DIAG, COV_BIAS_ACC_NOISE_DIAG ) * dt * dt; // bias acc covariance

        // cov_w.block<3, 3>(18, 18).diagonal() = Eigen::Vector3d(COV_NOISE_EXT_I2C_R, COV_NOISE_EXT_I2C_R, COV_NOISE_EXT_I2C_R) * dt * dt; // bias
        // gyro covariance cov_w.block<3, 3>(21, 21).diagonal() = Eigen::Vector3d(COV_NOISE_EXT_I2C_T, COV_NOISE_EXT_I2C_T, COV_NOISE_EXT_I2C_T) * dt
        // * dt;  // bias acc covariance cov_w(24, 24) = COV_NOISE_EXT_I2C_Td * dt * dt;

        state_inout.cov = F_x * state_inout.cov * F_x.transpose() + cov_w;

        // 状态更新
        R_imu = R_imu * Exp_f;
        // 姿态
        acc_imu = R_imu * acc_avr - state_inout.gravity;
        // 加速度
        pos_imu = pos_imu + vel_imu * dt + 0.5 * acc_imu * dt * dt;
        // 位置
        vel_imu = vel_imu + acc_imu * dt;
        // 速度
        angvel_last = angvel_avr;
        acc_s_last = acc_imu;

最后就是将传递的状态量作为输出,用于后面的状态更新

     // 继续推算,直到激光扫描结束时刻
    dt = end_pose_dt;

    state_inout.last_update_time = v_imu.back()->header.stamp.toSec() + dt;
    // cout << "Last update time = " <<  state_inout.last_update_time - g_lidar_star_tim << endl;
    if ( dt > 0.1 )
    {
        scope_color( ANSI_COLOR_RED_BOLD );
        for ( int i = 0; i < 1; i++ )
        {
            cout << __FILE__ << ", " << __LINE__ << "dt = " << dt << endl;
        }
        dt = 0.1;
    }
    // 将状态保存给state_inout,超出IMU数据时间部分,直接按时间差和最后一个IMU数据传播
    state_inout.vel_end = vel_imu + acc_imu * dt;
    state_inout.rot_end = R_imu * Exp( angvel_avr, dt );
    state_inout.pos_end = pos_imu + vel_imu * dt + 0.5 * acc_imu * dt * dt;

    // cout <<__FILE__ << ", " << __LINE__ <<" ,diagnose lio_state = " << std::setprecision(2) <<(state_inout - StatesGroup()).transpose() << endl;

    // cout << "Preintegration State diff = " << std::setprecision(2) << (state_inout - state_in).head<15>().transpose()
    //      <<  endl;
    // std::cout << __FILE__ << " " << __LINE__ << std::endl;
    // check_state(state_inout);
    if ( 0 )
    {
        if ( check_state( state_inout ) )
        {
            // printf_line;
            std::cout << __FILE__ << " " << __LINE__ << std::endl;
            state_inout.display( state_inout, "state_inout" );
            state_in.display( state_in, "state_in" );
        }
        // 检查预积分前后pos是否超过1m,超过认为无效,将传播后状态重置为传播前
        check_in_out_state( state_in, state_inout );
    }
    // cout << (state_inout - state_in).transpose() << endl;
    return state_inout;

在了解完预积分的代码后,接着了解光流追踪,具体的操作流程如下:

  • 用状态预测结果作为这帧图像的初始位姿。
  • 然后调用op_track.track_img( img_pose, -20 )跟踪特征点。
  • 最后将更新的img_pose作为输出,完成相机pose和内参的校准
// 取预积分后的状态,设置img_pose
op_track.track_img( img_pose, -20 );
// 这里的track_img注意与 LK_optical_flow_kernel::track_image区分
// 光流跟踪,同时去除outliers
g_cost_time_logger.record( tim, "Track_img" );
// cout << "Track_img cost " << tim.toc( "Track_img" ) << endl;
tim.tic( "Ransac" );
set_image_pose( img_pose, state_out );

下面是根据LIO状态和外参,设置相机pose/内参的操作

/*
* @brief R3LIVE::set_image_pose
* 根据LIO状态和外参,设置相机pose/内参
* @param image_pose
* @param state
*/
void R3LIVE::set_image_pose( std::shared_ptr< Image_frame > &image_pose, const StatesGroup &state )
{
    mat_3_3 rot_mat = state.rot_end;
    vec_3   t_vec = state.pos_end;
    vec_3   pose_t = rot_mat * state.pos_ext_i2c + t_vec;   // 相机在世界坐标系的位置
    mat_3_3 R_w2c = rot_mat * state.rot_ext_i2c;    // 相机在世界坐标系的姿态

    image_pose->set_pose( eigen_q( R_w2c ), pose_t );
    image_pose->fx = state.cam_intrinsic( 0 );
    image_pose->fy = state.cam_intrinsic( 1 );
    image_pose->cx = state.cam_intrinsic( 2 );
    image_pose->cy = state.cam_intrinsic( 3 );

    image_pose->m_cam_K << image_pose->fx, 0, image_pose->cx, 0, image_pose->fy, image_pose->cy, 0, 0, 1;
    scope_color( ANSI_COLOR_CYAN_BOLD );
    // cout << "Set Image Pose frm [" << image_pose->m_frame_idx << "], pose: " << eigen_q(rot_mat).coeffs().transpose()
    // << " | " << t_vec.transpose()
    // << " | " << eigen_q(rot_mat).angularDistance( eigen_q::Identity()) *57.3 << endl;
    // image_pose->inverse_pose();
}

在上面的track_img函数中,特征点跟踪时会先用RANSAC求基础矩阵过滤误匹配。然后调用reject_error_tracking_pts()利用预测结果过滤错误匹配。这部分的操作基本和VINS当中光流过滤的操作类似,只是使用了RANSAC而并没有使用正反光流过滤而已。

void Rgbmap_tracker::track_img( std::shared_ptr< Image_frame > &img_pose, double dis, int if_use_opencv )
{
    Common_tools::Timer tim;
    m_current_frame = img_pose->m_img;      // 取图像
    m_current_frame_time = img_pose->m_timestamp;
    m_map_rgb_pts_in_current_frame_pos.clear();     // 当前帧跟踪到的地图点
    if ( m_current_frame.empty() )      // 检查图像是否为空
        return;
    cv::Mat frame_gray = img_pose->m_img_gray;      // 取灰度图
    tim.tic( "HE" );
    tim.tic( "opTrack" );
    std::vector< uchar > status;
    std::vector< float > err;
    // 取上一帧跟踪的像素点,并检查数量是否足够
    // TODO: 如果跟踪到的像素点越来越少怎么办?
    m_current_tracked_pts = m_last_tracked_pts;
    int before_track = m_last_tracked_pts.size();
    if ( m_last_tracked_pts.size() < 30 )
    {
        m_last_frame_time = m_current_frame_time;
        return;
    }

    // 调用LK_optical_flow_kernel::track_image,光流跟踪,输出跟踪后的像素点m_current_tracked_pts
    m_lk_optical_flow_kernel->track_image( frame_gray, m_last_tracked_pts, m_current_tracked_pts, status, 2 );
    // 根据跟踪的结果,对容器进行裁减
    reduce_vector( m_last_tracked_pts, status );        // 成功跟踪的上一帧的点
    reduce_vector( m_old_ids, status );     // 成功跟踪的上一帧像素点所对应的地图点idx
    reduce_vector( m_current_tracked_pts, status );     // 当前帧成功跟踪的点

    int     after_track = m_last_tracked_pts.size();
    cv::Mat mat_F;

    tim.tic( "Reject_F" );
    unsigned int pts_before_F = m_last_tracked_pts.size();
    // 求基础矩阵F
    mat_F = cv::findFundamentalMat( m_last_tracked_pts, m_current_tracked_pts, cv::FM_RANSAC, 1.0, 0.997, status );
    unsigned int size_a = m_current_tracked_pts.size();
    // 根据求解F矩阵的RANSAC结果,去除outliers
    reduce_vector( m_last_tracked_pts, status );
    reduce_vector( m_old_ids, status );
    reduce_vector( m_current_tracked_pts, status );

    m_map_rgb_pts_in_current_frame_pos.clear();
    // 距离上一次跟踪的时间
    double frame_time_diff = ( m_current_frame_time - m_last_frame_time );
    // 遍历跟踪成功的点,保存像素点坐标以及跟踪到的速度
    for ( uint i = 0; i < m_last_tracked_pts.size(); i++ )
    {
        // 用于跳过靠近图像边缘的点
        if ( img_pose->if_2d_points_available( m_current_tracked_pts[ i ].x, m_current_tracked_pts[ i ].y, 1.0, 0.05 ) )
        {
            // m_rgb_pts_ptr_vec_in_last_frame[ m_old_ids[ i ] ]表示索引为 i 的地图点的指针
            // 这里将地图点转化为RGB_pts指针
            RGB_pts *rgb_pts_ptr = ( ( RGB_pts * ) m_rgb_pts_ptr_vec_in_last_frame[ m_old_ids[ i ] ] );
            // 保存当前帧跟踪到的地图点
            m_map_rgb_pts_in_current_frame_pos[ rgb_pts_ptr ] = m_current_tracked_pts[ i ];
            // 计算像素点速度
            cv::Point2f pt_img_vel = ( m_current_tracked_pts[ i ] - m_last_tracked_pts[ i ] ) / frame_time_diff;
            // 保存数据到地图点
            rgb_pts_ptr->m_img_pt_in_last_frame = vec_2( m_last_tracked_pts[ i ].x, m_last_tracked_pts[ i ].y );    // 成功跟踪的上一帧点
            rgb_pts_ptr->m_img_pt_in_current_frame =
                vec_2( m_current_tracked_pts[ i ].x, m_current_tracked_pts[ i ].y );    // 成功跟踪的当前帧点
            rgb_pts_ptr->m_img_vel = vec_2( pt_img_vel.x, pt_img_vel.y );   // 像素点移动速度
        }
    }

    if ( dis > 0 )
    {
        reject_error_tracking_pts( img_pose, dis );
    }
    // 保存图像帧
    m_old_gray = frame_gray.clone();
    m_old_frame = m_current_frame;
    // 保存当前帧跟踪到的地图点
    m_map_rgb_pts_in_last_frame_pos = m_map_rgb_pts_in_current_frame_pos;
    // 遍历当前帧跟踪到的地图点,更新如下容器:
    // - m_last_tracked_pts 成功跟踪的上一帧点
    // - m_rgb_pts_ptr_vec_in_last_frame 成功跟踪的上一帧点对应的地图点容器
    // - m_colors
    // - m_old_ids 成功跟踪的上一帧点对应的地图点索引
    update_last_tracking_vector_and_ids();

    m_frame_idx++;
    m_last_frame_time = m_current_frame_time;
}

R3LIVE源码解析(10) — R3LIVE中r3live_vio.cpp文件_第1张图片

你可能感兴趣的:(R3LIVE项目实战,R3LIVE源码解析,SLAM)