目录
一、定义
二、基本结构
三、代码实现
四、使用线段树的案例
五、总结
线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点。
使用线段树可以快速的查找某一个节点在若干条线段中出现的次数,时间复杂度为O(logN)。而未优化的空间复杂度为2N,实际应用时一般还要开4N的数组以免越界,因此有时需要离散化让空间压缩。
线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点。
对于线段树中的每一个非叶子节点[a,b],它的左儿子表示的区间为[a,(a+b)/2],右儿子表示的区间为[(a+b)/2+1,b]。因此线段树是平衡二叉树,最后的子节点数目为N,即整个线段区间的长度。
使用线段树可以快速的查找某一个节点在若干条线段中出现的次数,时间复杂度为O(logN)。而未优化的空间复杂度为2N,因此有时需要离散化让空间压缩。
线段树是建立在线段的基础上,每个结点都代表了一条线段[a,b]。长度为1的线段称为元线段。非元线段都有两个子结点,左结点代表的线段为[a,(a + b) / 2],右结点代表的线段为[((a + b) / 2)+1,b]。
长度范围为[1,L] 的一棵线段树的深度为log (L) + 1。这个显然,而且存储一棵线段树的空间复杂度为O(L)。
线段树支持最基本的操作为插入和删除一条线段。下面以插入为例,详细叙述,删除类似。
将一条线段[a,b] 插入到代表线段[l,r]的结点p中,如果p不是元线段,那么令mid=(l+r)/2。如果b
插入(删除)操作的时间复杂度为O(logn)。
public class Code01_SegmentTree {
public static class SegmentTree {
// arr[]为原序列的信息从0开始,但在arr里是从1开始的
// sum[]模拟线段树维护区间和
// lazy[]为累加和懒惰标记
// change[]为更新的值
// update[]为更新慵懒标记
private int MAXN;
private int[] arr;
private int[] sum;
private int[] lazy;
private int[] change;
private boolean[] update;
public SegmentTree(int[] origin) {
MAXN = origin.length + 1;
arr = new int[MAXN]; // arr[0] 不用 从1开始使用
for (int i = 1; i < MAXN; i++) {
arr[i] = origin[i - 1];
}
sum = new int[MAXN << 2]; // 用来支持脑补概念中,某一个范围的累加和信息
lazy = new int[MAXN << 2]; // 用来支持脑补概念中,某一个范围沒有往下傳遞的纍加任務
change = new int[MAXN << 2]; // 用来支持脑补概念中,某一个范围有没有更新操作的任务
update = new boolean[MAXN << 2]; // 用来支持脑补概念中,某一个范围更新任务,更新成了什么
}
private void pushUp(int rt) {
sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
}
// 之前的,所有懒增加,和懒更新,从父范围,发给左右两个子范围
// 分发策略是什么
// ln表示左子树元素结点个数,rn表示右子树结点个数
private void pushDown(int rt, int ln, int rn) {
if (update[rt]) {
update[rt << 1] = true;
update[rt << 1 | 1] = true;
change[rt << 1] = change[rt];
change[rt << 1 | 1] = change[rt];
lazy[rt << 1] = 0;
lazy[rt << 1 | 1] = 0;
sum[rt << 1] = change[rt] * ln;
sum[rt << 1 | 1] = change[rt] * rn;
update[rt] = false;
}
if (lazy[rt] != 0) {
lazy[rt << 1] += lazy[rt];
sum[rt << 1] += lazy[rt] * ln;
lazy[rt << 1 | 1] += lazy[rt];
sum[rt << 1 | 1] += lazy[rt] * rn;
lazy[rt] = 0;
}
}
// 在初始化阶段,先把sum数组,填好
// 在arr[l~r]范围上,去build,1~N,
// rt : 这个范围在sum中的下标
public void build(int l, int r, int rt) {
if (l == r) {
sum[rt] = arr[l];
return;
}
int mid = (l + r) >> 1;
build(l, mid, rt << 1);
build(mid + 1, r, rt << 1 | 1);
pushUp(rt);
}
// L~R 所有的值变成C
// l~r rt
public void update(int L, int R, int C, int l, int r, int rt) {
if (L <= l && r <= R) {
update[rt] = true;
change[rt] = C;
sum[rt] = C * (r - l + 1);
lazy[rt] = 0;
return;
}
// 当前任务躲不掉,无法懒更新,要往下发
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
if (L <= mid) {
update(L, R, C, l, mid, rt << 1);
}
if (R > mid) {
update(L, R, C, mid + 1, r, rt << 1 | 1);
}
pushUp(rt);
}
// L~R, C 任务!
// rt,l~r
public void add(int L, int R, int C,
int l, int r, int rt) {
// 任务如果把此时的范围全包了!
if (L <= l && r <= R) {
sum[rt] += C * (r - l + 1);
lazy[rt] += C;
return;
}
// 任务没有把你全包!
// l r mid = (l+r)/2
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
// L~R
if (L <= mid) {
add(L, R, C, l, mid, rt << 1);
}
if (R > mid) {
add(L, R, C, mid + 1, r, rt << 1 | 1);
}
pushUp(rt);
}
// 1~6 累加和是多少? 1~8 rt
public long query(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) {
return sum[rt];
}
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
long ans = 0;
if (L <= mid) {
ans += query(L, R, l, mid, rt << 1);
}
if (R > mid) {
ans += query(L, R, mid + 1, r, rt << 1 | 1);
}
return ans;
}
}
public static class Right {
public int[] arr;
public Right(int[] origin) {
arr = new int[origin.length + 1];
for (int i = 0; i < origin.length; i++) {
arr[i + 1] = origin[i];
}
}
public void update(int L, int R, int C) {
for (int i = L; i <= R; i++) {
arr[i] = C;
}
}
public void add(int L, int R, int C) {
for (int i = L; i <= R; i++) {
arr[i] += C;
}
}
public long query(int L, int R) {
long ans = 0;
for (int i = L; i <= R; i++) {
ans += arr[i];
}
return ans;
}
}
public static int[] genarateRandomArray(int len, int max) {
int size = (int) (Math.random() * len) + 1;
int[] origin = new int[size];
for (int i = 0; i < size; i++) {
origin[i] = (int) (Math.random() * max) - (int) (Math.random() * max);
}
return origin;
}
public static boolean test() {
int len = 100;
int max = 1000;
int testTimes = 5000;
int addOrUpdateTimes = 1000;
int queryTimes = 500;
for (int i = 0; i < testTimes; i++) {
int[] origin = genarateRandomArray(len, max);
SegmentTree seg = new SegmentTree(origin);
int S = 1;
int N = origin.length;
int root = 1;
seg.build(S, N, root);
Right rig = new Right(origin);
for (int j = 0; j < addOrUpdateTimes; j++) {
int num1 = (int) (Math.random() * N) + 1;
int num2 = (int) (Math.random() * N) + 1;
int L = Math.min(num1, num2);
int R = Math.max(num1, num2);
int C = (int) (Math.random() * max) - (int) (Math.random() * max);
if (Math.random() < 0.5) {
seg.add(L, R, C, S, N, root);
rig.add(L, R, C);
} else {
seg.update(L, R, C, S, N, root);
rig.update(L, R, C);
}
}
for (int k = 0; k < queryTimes; k++) {
int num1 = (int) (Math.random() * N) + 1;
int num2 = (int) (Math.random() * N) + 1;
int L = Math.min(num1, num2);
int R = Math.max(num1, num2);
long ans1 = seg.query(L, R, S, N, root);
long ans2 = rig.query(L, R);
if (ans1 != ans2) {
return false;
}
}
}
return true;
}
public static void main(String[] args) {
int[] origin = { 2, 1, 1, 2, 3, 4, 5 };
SegmentTree seg = new SegmentTree(origin);
int S = 1; // 整个区间的开始位置,规定从1开始,不从0开始 -> 固定
int N = origin.length; // 整个区间的结束位置,规定能到N,不是N-1 -> 固定
int root = 1; // 整棵树的头节点位置,规定是1,不是0 -> 固定
int L = 2; // 操作区间的开始位置 -> 可变
int R = 5; // 操作区间的结束位置 -> 可变
int C = 4; // 要加的数字或者要更新的数字 -> 可变
// 区间生成,必须在[S,N]整个范围上build
seg.build(S, N, root);
// 区间修改,可以改变L、R和C的值,其他值不可改变
seg.add(L, R, C, S, N, root);
// 区间更新,可以改变L、R和C的值,其他值不可改变
seg.update(L, R, C, S, N, root);
// 区间查询,可以改变L和R的值,其他值不可改变
long sum = seg.query(L, R, S, N, root);
System.out.println(sum);
System.out.println("对数器测试开始...");
System.out.println("测试结果 : " + (test() ? "通过" : "未通过"));
}
}
想象一下标准的俄罗斯方块游戏,X轴是积木最终下落到底的轴线。下面是这个游戏的简化版:
1)只会下落正方形积木
2)[a,b] -> 代表一个边长为b的正方形积木,积木左边缘沿着X = a这条线从上方掉落
3)认为整个X轴都可能接住积木,也就是说简化版游戏是没有整体的左右边界的
4)没有整体的左右边界,所以简化版游戏不会消除积木,因为不会有哪一层被填满。
给定一个N*2的二维数组matrix,可以代表N个积木依次掉落,返回每一次掉落之后的最大高度
public class FallingSquares {
public static class SegmentTree {
private int[] max;
private int[] change;
private boolean[] update;
public SegmentTree(int size) {
int N = size + 1;
max = new int[N << 2];
change = new int[N << 2];
update = new boolean[N << 2];
}
private void pushUp(int rt) {
max[rt] = Math.max(max[rt << 1], max[rt << 1 | 1]);
}
// ln表示左子树元素结点个数,rn表示右子树结点个数
private void pushDown(int rt, int ln, int rn) {
if (update[rt]) {
update[rt << 1] = true;
update[rt << 1 | 1] = true;
change[rt << 1] = change[rt];
change[rt << 1 | 1] = change[rt];
max[rt << 1] = change[rt];
max[rt << 1 | 1] = change[rt];
update[rt] = false;
}
}
public void update(int L, int R, int C, int l, int r, int rt) {
if (L <= l && r <= R) {
update[rt] = true;
change[rt] = C;
max[rt] = C;
return;
}
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
if (L <= mid) {
update(L, R, C, l, mid, rt << 1);
}
if (R > mid) {
update(L, R, C, mid + 1, r, rt << 1 | 1);
}
pushUp(rt);
}
public int query(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) {
return max[rt];
}
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
int left = 0;
int right = 0;
if (L <= mid) {
left = query(L, R, l, mid, rt << 1);
}
if (R > mid) {
right = query(L, R, mid + 1, r, rt << 1 | 1);
}
return Math.max(left, right);
}
}
public HashMap index(int[][] positions) {
TreeSet pos = new TreeSet<>();
for (int[] arr : positions) {
pos.add(arr[0]);
pos.add(arr[0] + arr[1] - 1);
}
HashMap map = new HashMap<>();
int count = 0;
for (Integer index : pos) {
map.put(index, ++count);
}
return map;
}
public List fallingSquares(int[][] positions) {
HashMap map = index(positions);
int N = map.size();
SegmentTree segmentTree = new SegmentTree(N);
int max = 0;
List res = new ArrayList<>();
// 每落一个正方形,收集一下,所有东西组成的图像,最高高度是什么
for (int[] arr : positions) {
int L = map.get(arr[0]);
int R = map.get(arr[0] + arr[1] - 1);
int height = segmentTree.query(L, R, 1, N, 1) + arr[1];
max = Math.max(max, height);
res.add(max);
segmentTree.update(L, R, height, 1, N, 1);
}
return res;
}
}
区间范围上,统一增加,或者统一更新一个值。大范围信息可以只由左、右两侧信息加工出,而不必遍历左右两个子范围的具体状况
最大值,最小值,累加和都可以用线段树。