python多任务-线程

python的thread模块是比较底层的模块,python的threading模块是对thread做了一些包装的,可以更加方便的被使用

查看线程数量

#coding=utf-8
import threading
from time import sleep,ctime

def sing():
    for i in range(3):
        print("正在唱歌...%d"%i)
        sleep(1)

def dance():
    for i in range(3):
        print("正在跳舞...%d"%i)
        sleep(1)

if __name__ == '__main__':
    print('---开始---:%s'%ctime())

    t1 = threading.Thread(target=sing)
    t2 = threading.Thread(target=dance)

    t1.start()
    t2.start()

    while True:
        length = len(threading.enumerate())
        print('当前运行的线程数为:%d'%length)
        if length<=1:
            break

        sleep(0.5)

结果

---开始---:Thu Dec 27 11:22:19 2018
正在唱歌...0
正在跳舞...0
当前运行的线程数为:3
当前运行的线程数为:3
正在唱歌...1
正在跳舞...1
当前运行的线程数为:3
当前运行的线程数为:3
正在唱歌...2
正在跳舞...2
当前运行的线程数为:3
当前运行的线程数为:3
当前运行的线程数为:1

当调用Thread的时候不会创建线程只是创建了一个对象,只有在调用start的时候才会创建
通过使用threading模块能完成多任务的程序开发,为了让每个线程的封装性更完美,所以使用threading模块时,往往会定义一个新的子类class,只要继承threading.Thread就可以了,然后重写run方法,这里调用start其实就是调用了Thread的run方法。

  • python的threading.Thread类有一个run方法,用于定义线程的功能函数,可以在自己的线程类中覆盖该方法。而创建自己的线程实例后,通过Thread类的start方法,可以启动该线程,交给python虚拟机进行调度,当该线程获得执行的机会时,就会调用run方法执行线程。
#coding=utf-8
import threading
import time

class MyThread(threading.Thread):
    def run(self):
        for i in range(3):
            time.sleep(1)
            msg = "I'm "+self.name+' @ '+str(i)
            print(msg)
def test():
    for i in range(5):
        t = MyThread()
        t.start()
if __name__ == '__main__':
    test()

执行结果:

I'm Thread-1 @ 0
I'm Thread-3 @ 0
I'm Thread-2 @ 0
I'm Thread-4 @ 0
I'm Thread-5 @ 0
I'm Thread-1 @ 1
I'm Thread-3 @ 1
I'm Thread-2 @ 1
I'm Thread-4 @ 1
I'm Thread-5 @ 1
I'm Thread-1 @ 2
I'm Thread-2 @ 2
I'm Thread-3 @ 2
I'm Thread-4 @ 2
I'm Thread-5 @ 2

从代码和执行结果我们可以看出,多线程程序的执行顺序是不确定的。当执行到sleep语句时,线程将被阻塞(Blocked),到sleep结束后,线程进入就绪(Runnable)状态,等待调度。而线程调度将自行选择一个线程执行。上面的代码中只能保证每个线程都运行完整个run函数,但是线程的启动顺序、run函数中每次循环的执行顺序都不能确定。

总结
1、每个线程默认有一个名字,尽管上面的例子中没有指定线程对象的name,但是python会自动为线程指定一个名字。
2、当线程的run()方法结束时该线程完成。
3、无法控制线程调度程序,但可以通过别的方式来影响线程调度的方式

互斥锁

当多个线程几乎同时修改某一个共享数据的时候,需要进行同步控制。线程同步能够保证多个线程安全访问竞争资源,最简单的同步机制是引入互斥锁。互斥锁为资源引入一个状态:锁定/非锁定

某个线程要更改共享数据时,先将其锁定,此时资源的状态为“锁定”,其他线程不能更改;直到该线程释放资源,将资源的状态变成“非锁定”,其他的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进行写入操作,从而保证了多线程情况下数据的正确性。

threading模块中定义了Lock类,可以方便的处理锁定:

# 创建锁
mutex = threading.Lock()

# 锁定
mutex.acquire()

# 释放
mutex.release()

注意:
如果这个锁之前是没有上锁的,那么acquire不会堵塞
如果在调用acquire对这个锁上锁之前 它已经被 其他线程上了锁,那么此时acquire会堵塞,直到这个锁被解锁为止

import threading
import time

g_num = 0

def test1(num):
    global g_num
    for i in range(num):
        #如果之前没被上锁,那么上锁成功
        #如果之前已经被上锁了,那么会堵塞在这里,直到这个锁被解开
        mutex.acquire()  # 上锁
        g_num += 1
        mutex.release()  # 解锁

    print("---test1---g_num=%d"%g_num)

def test2(num):
    global g_num
    for i in range(num):
        mutex.acquire()  # 上锁
        g_num += 1
        mutex.release()  # 解锁

    print("---test2---g_num=%d"%g_num)

# 创建一个互斥锁
# 默认是未上锁的状态
mutex = threading.Lock()

# 创建2个线程,让他们各自对g_num加1000000次
p1 = threading.Thread(target=test1, args=(1000000,))
p1.start()

p2 = threading.Thread(target=test2, args=(1000000,))
p2.start()

# 等待计算完成
while len(threading.enumerate()) != 1:
    time.sleep(1)

print("2个线程对同一个全局变量操作之后的最终结果是:%s" % g_num)

运行结果

---test1---g_num=1000000

---test2---g_num=2000000

2个线程对同一个全局变量操作之后的最终结果是:2000000

第一个线程上锁直到执行完之后才到第二个线程继续执行。 上锁的位置不同,产生的效果也会不同,如果将子线程对数据操作的代码进行上锁,则两个线程将交叉对数据进行操作,修改示例如下

  for i in range(num):
        mutex.acquire()  # 上锁
        g_num += 1
        mutex.release()  # 解锁

运行结果:

---test2---g_num=1768428
---test1---g_num=2000000
2个线程对同一个全局变量操作之后的最终结果是:2000000

上锁解锁过程
当一个线程调用锁的acquire()方法获得锁时,锁就进入“locked”状态。
每次只有一个线程可以获得锁。如果此时另一个线程试图获得这个锁,该线程就会变为“blocked”状态,称为“阻塞”,直到拥有锁的线程调用锁的release()方法释放锁之后,锁进入“unlocked”状态。
线程调度程序从处于同步阻塞状态的线程中选择一个来获得锁,并使得该线程进入运行(running)状态。

总结
锁的好处:

  • 确保了某段关键代码只能由一个线程从头到尾完整地执行

锁的坏处:

  • 阻止了多线程并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大地下降了
  • 由于可以存在多个锁,不同的线程持有不同的锁,并试图获取对方持有的锁时,可能会造成死锁

你可能感兴趣的:(python多任务-线程)