《动手学深度学习 Pytorch版》 5.2 参数管理

import torch
from torch import nn

net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)
tensor([[-0.3771],
        [-0.3822]], grad_fn=)

5.2.1 参数访问

由 Sequential 类定义的模型可以通过索引访问其任意层,就像一个列表一样,每层的参数都在其属性中。如下所示的第二个全连接层的参数。参数名称唯一的标识该参数。

print(net[2].state_dict())
OrderedDict([('weight', tensor([[ 0.0867,  0.1007,  0.2371,  0.1944, -0.2581, -0.2854, -0.0813, -0.1310]])), ('bias', tensor([-0.2911]))])
  1. 目标参数

    参数表示为参数类的实例

print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)

net[2].weight.grad == None

Parameter containing:
tensor([-0.2911], requires_grad=True)
tensor([-0.2911])





True
  1. 一次性访问所有参数

    当块很复杂的时候则需要递归整棵树来提取每个子块的参数。

print(*[(name, param.shape) for name, param in net[0].named_parameters()])  # 太优雅了!列表推导式+封包
print(*[(name, param.shape) for name, param in net.named_parameters()])

net.state_dict()['2.bias'].data  # 也可通过键值访问(这什么奇妙的语法)
('weight', torch.Size([8, 4])) ('bias', torch.Size([8]))
('0.weight', torch.Size([8, 4])) ('0.bias', torch.Size([8])) ('2.weight', torch.Size([1, 8])) ('2.bias', torch.Size([1]))





tensor([-0.2911])
  1. 从嵌套块收集参数
def block1():
    return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                         nn.Linear(8, 4), nn.ReLU())

def block2():
    net = nn.Sequential()
    for i in range(4):
        net.add_module(f'block {i}', block1())
    return net

rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)

print(rgnet)  # 查看网络结构

rgnet[0][1][0].bias.data  # 可嵌套索引访问
Sequential(
  (0): Sequential(
    (block 0): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
    (block 1): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
    (block 2): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
    (block 3): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
  )
  (1): Linear(in_features=4, out_features=1, bias=True)
)





tensor([-0.2230,  0.3445, -0.0584, -0.4562,  0.3161, -0.4832,  0.2733,  0.1244])

5.2.2 参数初始化

  1. 内置初始化

    框架提供默认的随机初始化,也允许我们创建自定义的初始化方法。

    默认情况下,PyTorch 会根据一个范围均匀地初始化权重和偏置矩阵。PyTorch 的 nn.init 模块提供了很多内置初始化的方法。

def init_normal(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, mean=0, std=0.01)  # 提供均值为0,标准差为0.01的初始化
        nn.init.zeros_(m.bias)  # 偏置设为0
net.apply(init_normal)  # 应用参数
net[0].weight.data[0], net[0].bias.data[0]
(tensor([-0.0041,  0.0007,  0.0194,  0.0155]), tensor(0.))
def init_constant(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 1)  # 初始化为 1
        nn.init.zeros_(m.bias)
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]
(tensor([1., 1., 1., 1.]), tensor(0.))
def init_xavier(m):
    if type(m) == nn.Linear:
        nn.init.xavier_uniform_(m.weight)
def init_42(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 42)

net[0].apply(init_xavier)  # 使用 Xavier 初始化第一层
net[2].apply(init_42)  # 第三层初始化为常数值42
print(net[0].weight.data[0])
print(net[2].weight.data)
tensor([ 0.2770, -0.0892,  0.1333,  0.0069])
tensor([[42., 42., 42., 42., 42., 42., 42., 42.]])
  1. 自定义初始化

以下示例实现一个自定义分布初始化

w ∼ { U ( 5 , 10 ) , 可能性为 1 4 0 , 可能性为 1 2 U ( − 10 , − 5 ) , 可能性为 1 4 \begin{equation} w\sim\left\{ \begin{aligned} & U(5,10), && 可能性为\frac{1}{4}\\ & 0, && 可能性为\frac{1}{2}\\ & U(-10,-5), && 可能性为\frac{1}{4} \end{aligned} \right. \end{equation} w U(5,10),0,U(10,5),可能性为41可能性为21可能性为41

def my_init(m):
    if type(m) == nn.Linear:
        print("Init", *[(name, param.shape)
                        for name, param in m.named_parameters()][0])
        # 妙蛙,根据对称性,先生成全范围再按范围删除
        nn.init.uniform_(m.weight, -10, 10)
        m.weight.data *= m.weight.data.abs() >= 5

net.apply(my_init)
net[0].weight[:2]
Init weight torch.Size([8, 4])
Init weight torch.Size([1, 8])





tensor([[-5.8878, -5.7943,  8.7435, -7.0228],
        [-0.0000, -0.0000,  5.7496, -8.9288]], grad_fn=)
# 我们始终可以直接设置参数

net[0].weight.data[:] += 1
net[0].weight.data[0, 0] = 42
net[0].weight.data[0]
tensor([42.0000, -4.7943,  9.7435, -6.0228])

5.2.3 参数绑定

shared = nn.Linear(8, 8)  # 共享层
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                    shared, nn.ReLU(),
                    shared, nn.ReLU(),
                    nn.Linear(8, 1))
net(X)
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100  # 测试一下是否是同一个对象而不是同一个值
print(net[2].weight.data[0] == net[4].weight.data[0])
tensor([True, True, True, True, True, True, True, True])
tensor([True, True, True, True, True, True, True, True])

练习

(1)使用 FancyMLP 模型访问各个层的参数。

FancyMLP是啥?


(2)查看初始化模块文档以了解不同的初始方法。

dir(nn.init)
['Tensor',
 '__builtins__',
 '__cached__',
 '__doc__',
 '__file__',
 '__loader__',
 '__name__',
 '__package__',
 '__spec__',
 '_calculate_correct_fan',
 '_calculate_fan_in_and_fan_out',
 '_make_deprecate',
 '_no_grad_fill_',
 '_no_grad_normal_',
 '_no_grad_trunc_normal_',
 '_no_grad_uniform_',
 '_no_grad_zero_',
 'calculate_gain',
 'constant',
 'constant_',
 'dirac',
 'dirac_',
 'eye',
 'eye_',
 'kaiming_normal',
 'kaiming_normal_',
 'kaiming_uniform',
 'kaiming_uniform_',
 'math',
 'normal',
 'normal_',
 'ones_',
 'orthogonal',
 'orthogonal_',
 'sparse',
 'sparse_',
 'torch',
 'trunc_normal_',
 'uniform',
 'uniform_',
 'warnings',
 'xavier_normal',
 'xavier_normal_',
 'xavier_uniform',
 'xavier_uniform_',
 'zeros_']

(3)构建包含共享参数层的多元感知机并对其进行训练。在训练过程中,观察模型各层的参数和梯度。


(4)为什么共享参数是个好方式?

共享参数可以实现平移不变性,有时效果会更好,比如卷积神经网络。

你可能感兴趣的:(《动手学深度学习,Pytorch版》学习笔记,深度学习,pytorch,人工智能)