一、简介
本实验参考《spark权威指南》第9章:Data Sources(数据源)
二、实验内容
利用spark-shell读写以下类型的数据源
csv
json
orc
parquet
jdbc
三、实验前准备
1.实验数据说明
参考“Spark实验前准备”说明,下载和准备《spark权威指南》配套的代码和数据文件
本实验要用的数据文件夹(windows下查看)
flight-data下的子文件夹
2.准备实验数据
以下在ubuntu下执行
1)将本实验所需要的 数据 文件载入到hdfs中
hdfs dfs -mkdir -p /mylab/mydata/spark/spark_guide_data
hdfs dfs -put -p /home/hadoop/share/mydata/spark/spark_guide_data/flight-data /mylab/mydata/spark/spark_guide_data
hdfs dfs -ls /mylab/mydata/spark/spark_guide_data/flight-data
hdfs dfs -ls /mylab/mydata/spark/spark_guide_data/flight-data/csv
3.改变日志输出级别
在使用spark-shell过程中,屏幕上可能会输出很多信息,可以通过设置日志级别来控制日志输出的详细程度
方法之一是配置conf/log4j.properties
log4j.rootCategory=INFO, console #可以把INFO改为ERROR、WARN、INFO、DEBUG
所以要想屏幕输出的提示信息最少,配置成
log4j.rootCategory=ERROR, console
然后重启spark-shell
方法之二是启动spark-shell来设置,参见下面的说明
四、启动
1.启动spark-shell
spark-shell
直到看到大大大大的spark,及scala提示符
2.改变日志输出级别
要是对日志输出比较烦,可以通过
sc.setloglevel(WARN)
sc.setloglevel(ERROR)
sc.setloglevel(DEBUG)
来改变日志级别
3.spark-shell --help
Usage: ./bin/spark-shell [options]
Scala REPL options:
-I
Options:
--master MASTER_URL spark://host:port, mesos://host:port, yarn,
k8s://https://host:port, or local (Default: local[*]).
--deploy-mode DEPLOY_MODE Whether to launch the driver program locally ("client") or
on one of the worker machines inside the cluster ("cluster")
(Default: client).
--class CLASS_NAME Your application's main class (for Java / Scala apps).
--name NAME A name of your application.
--jars JARS Comma-separated list of jars to include on the driver
and executor classpaths.
--packages Comma-separated list of maven coordinates of jars to include
on the driver and executor classpaths. Will search the local
maven repo, then maven central and any additional remote
repositories given by --repositories. The format for the
coordinates should be groupId:artifactId:version.
--exclude-packages Comma-separated list of groupId:artifactId, to exclude while
resolving the dependencies provided in --packages to avoid
dependency conflicts.
--repositories Comma-separated list of additional remote repositories to
search for the maven coordinates given with --packages.
--py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to place
on the PYTHONPATH for Python apps.
--files FILES Comma-separated list of files to be placed in the working
directory of each executor. File paths of these files
in executors can be accessed via SparkFiles.get(fileName).
--conf, -c PROP=VALUE Arbitrary Spark configuration property.
--properties-file FILE Path to a file from which to load extra properties. If not
specified, this will look for conf/spark-defaults.conf.
--driver-memory MEM Memory for driver (e.g. 1000M, 2G) (Default: 1024M).
--driver-java-options Extra Java options to pass to the driver.
--driver-library-path Extra library path entries to pass to the driver.
--driver-class-path Extra class path entries to pass to the driver. Note that
jars added with --jars are automatically included in the
classpath.
--executor-memory MEM Memory per executor (e.g. 1000M, 2G) (Default: 1G).
--proxy-user NAME User to impersonate when submitting the application.
This argument does not work with --principal / --keytab.
--help, -h Show this help message and exit.
--verbose, -v Print additional debug output.
--version, Print the version of current Spark.
Cluster deploy mode only:
--driver-cores NUM Number of cores used by the driver, only in cluster mode
(Default: 1).
Spark standalone or Mesos with cluster deploy mode only:
--supervise If given, restarts the driver on failure.
Spark standalone, Mesos or K8s with cluster deploy mode only:
--kill SUBMISSION_ID If given, kills the driver specified.
--status SUBMISSION_ID If given, requests the status of the driver specified.
Spark standalone, Mesos and Kubernetes only:
--total-executor-cores NUM Total cores for all executors.
Spark standalone, YARN and Kubernetes only:
--executor-cores NUM Number of cores used by each executor. (Default: 1 in
YARN and K8S modes, or all available cores on the worker
in standalone mode).
Spark on YARN and Kubernetes only:
--num-executors NUM Number of executors to launch (Default: 2).
If dynamic allocation is enabled, the initial number of
executors will be at least NUM.
--principal PRINCIPAL Principal to be used to login to KDC.
--keytab KEYTAB The full path to the file that contains the keytab for the
principal specified above.
Spark on YARN only:
--queue QUEUE_NAME The YARN queue to submit to (Default: "default").
--archives ARCHIVES Comma separated list of archives to be extracted into the
working directory of each executor.
五、实验过程
除非特殊说明,以下均在scala>提示符下执行,需要输入的代码在begin-end之间
注:对于以下这种多行文本,需要先执行:paste,然后输入多行或者粘贴,之后Ctrl-D(这个是指Ctrl和D的两个键同时敲下去)结束,系统就开始执行
1.Schema
=====================common Schema begin =====================
:paste
import org.apache.spark.sql.types._
val myManualSchema = new StructType(Array(
new StructField("DEST_COUNTRY_NAME", StringType, true),
new StructField("ORIGIN_COUNTRY_NAME", StringType, true),
new StructField("count", LongType, false)
))
Ctrl-D(这个是指Ctrl和D的两个键同时敲下去)
=====================common Schema end =====================
2.CSV
=====================CSV begin=====================
:paste
val csv=spark.read.format("csv")
.option("header", "true")
.option("mode", "FAILFAST")
.schema(myManualSchema)
.load("hdfs:///mylab/mydata/spark/spark_guide_data/flight-data/csv/2010-summary.csv")
.take(5)
csv.show
Ctrl-D
csv.foreach(println)
:paste
val csvFile = spark.read.format("csv")
.option("header", "true")
.option("mode", "FAILFAST")
.schema(myManualSchema)
.load("hdfs:///mylab/mydata/spark/spark_guide_data/flight-data/csv/2010-summary.csv")
Ctrl-D
:paste
csvFile.write.format("csv")
.mode("overwrite")
.option("sep", "\t")
.save("hdfs:///mylab/mydata/spark/spark_guide_data/flight-data/csv/2010-summary-2.csv")
Ctrl-D
在unbunt另外开一个terminal
hdfs dfs -ls /mylab/mydata/spark/spark_guide_data/flight-data/csv/2010-summary-2.csv
=====================CSV end=====================
2. JSON
=====================JSON begin=====================
:paste
val json=spark.read.format("json")
.option("mode", "FAILFAST")
.schema(myManualSchema)
.load("hdfs:///mylab/mydata/spark/spark_guide_data/flight-data/json/2010-summary.json")
Ctrl-D
json.show(5)
:paste
json.write.format("json")
.mode("overwrite")
.save("hdfs:///mylab/mydata/spark/spark_guide_data/flight-data/json/2010-summary-2.json")
Ctrl-D
在unbunt另外开一个terminal
hdfs dfs -ls hdfs:///mylab/mydata/spark/spark_guide_data/flight-data/json/2010-summary-2.json
=====================JSON end=====================
3. Parquet
=====================Parquet begin=====================
:paste
val parquet=spark.read.format("parquet")
.load("hdfs:///mylab/mydata/spark/spark_guide_data/flight-data/parquet/2010-summary.parquet")
Ctrl-D
parquet.take(5).foreach(println)
:paste
parquet.write.format("parquet")
.mode("overwrite")
.save("hdfs:///mylab/mydata/spark/spark_guide_data/flight-data/parquet/2010-summary-2.parquet")
Ctrl-D
:paste
json.write.format("parquet")
.mode("overwrite")
.save("hdfs:///mylab/mydata/spark/spark_guide_data/flight-data/parquet/2010-summary-3.parquet")
Ctrl-D
在unbunt另外开一个terminal
hdfs dfs -ls /mylab/mydata/spark/spark_guide_data/flight-data/parquet
=====================Parquet end=====================
4.Orc
=====================Orc begin=====================
:paste
val orc=spark.read.format("orc")
.load("hdfs:///mylab/mydata/spark/spark_guide_data/flight-data/orc/2010-summary.orc")
orc.limit(5).show()
Ctrl-D
:paste
orc.write.format("orc")
.mode("overwrite")
.save("hdfs:///mylab/mydata/spark/spark_guide_data/flight-data/orc/2010-summary-2.orc")
Ctrl-D
=====================Orc end=====================
5. MySQL
=====================MySQL begin=====================
#in MySQL
mysql -u test -p testdb
show tables;
create table student(
id int not null,
name varchar(20) not null
);
insert into student value(1,'zhang');
insert into student value(2,'zhao');
insert into student value(3,'li');
insert into student value(4,'qian');
create table score(
id int not null,
math int ,
eng int ,
phy int,
chem int
);
insert into score value(1,134,34,13,5);
insert into score value(2,375,388,647,656);
insert into score value(3,894,909,386,647);
insert into score value(4,184,148,334,1837);
select a.id,a.name,b.
math ,
eng,
phy,
chem
from student a,score b
where a.id=b.id;
#切换到Spark-SQL环境
#select 方法一
:paste
val df1=spark.read.format("jdbc")
.option("url","jdbc:mysql://master:3306/testdb")
.option("driver","com.mysql.cj.jdbc.Driver")
.option("dbtable","student")
.option("user","test")
.option("password","test")
.load()
Ctrl-D
df1.show
#select 方法二
:paste
val df1=spark.read.format("jdbc")
.option("url","jdbc:mysql://master:3306")
.option("driver","com.mysql.cj.jdbc.Driver")
.option("dbname","testdb")
.option("dbtable","student")
.option("user","test")
.option("password","test")
.load()
Ctrl-D
#或者这样
:paste
val props = new java.util.Properties
props.setProperty("driver","com.mysql.cj.jdbc.Driver")
props.setProperty("user","test")
props.setProperty("password","test")
val url ="jdbc:mysql://master:3306/testdb"
val tablename="student"
val df1= spark.read.jdbc(url, tablename, props)
Ctrl-D
df1.show
#select 方法三
:paste
val props = new java.util.Properties
props.setProperty("driver","com.mysql.cj.jdbc.Driver")
props.setProperty("user","test")
props.setProperty("password","test")
val url ="jdbc:mysql://master:3306/testdb"
val queryname="""
(select a.id,a.name,b.math,b.eng,b.phy,b.chem
from student a,score b
where a.id=b.id) T
"""
val df1= spark.read.jdbc(url, queryname, props)
Ctrl-D
df1.show
#insert
:paste
import java.util.Properties
import org.apache.spark.sql.types._
import org.apache.spark.sql.Row
val studentRDD = spark.sparkContext.parallelize(Array("13 cheng", "14 qian")).map(_.split(" "))
val schema = StructType(List(StructField("id", IntegerType, true), StructField("name", StringType, true)))
val rowRDD = studentRDD.map(p => Row(p(0).toInt, p(1).trim))
val studentDF = spark.createDataFrame(rowRDD, schema)
val prop = new Properties
prop.put("user", "test")
prop.put("password", "test")
prop.put("driver", "com.mysql.cj.jdbc.Driver")
studentDF.write.mode("append").jdbc("jdbc:mysql://master:3306/testdb", "student", prop)
Ctrl-D
#看看结果
:paste
val props = new java.util.Properties
props.setProperty("driver","com.mysql.cj.jdbc.Driver")
props.setProperty("user","test")
props.setProperty("password","test")
val url ="jdbc:mysql://master:3306/testdb"
val tablename="student"
val df1= spark.read.jdbc(url, tablename, props)
df1.show
Ctrl-D
=====================MySQL end=====================
:quit退出