统计分析

01-统计分析功能(生成统计数据)

一、数据库设计

1、数据库

guli_statistics

2、数据表

guli_statistics.sql

二、创建微服务

1、在service模块下创建子模块

service_statistics

统计分析_第1张图片

2、application.properties

resources目录下创建文件

# 服务端口
server.port=8008
# 服务名
spring.application.name=service-statistics

# mysql数据库连接
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost:3306/guli?serverTimezone=GMT%2B8
spring.datasource.username=root
spring.datasource.password=root

#返回json的全局时间格式
spring.jackson.date-format=yyyy-MM-dd HH:mm:ss
spring.jackson.time-zone=GMT+8

#配置mapper xml文件的路径
mybatis-plus.mapper-locations=classpath:com/atguigu/staservice/mapper/xml/*.xml

#mybatis日志
mybatis-plus.configuration.log-impl=org.apache.ibatis.logging.stdout.StdOutImpl

# nacos服务地址
spring.cloud.nacos.discovery.server-addr=127.0.0.1:8848

#开启熔断机制
feign.hystrix.enabled=true
# 设置hystrix超时时间,默认1000ms
hystrix.command.default.execution.isolation.thread.timeoutInMilliseconds=3000

3、MP代码生成器生成代码

统计分析_第2张图片

4、创建SpringBoot启动类

@SpringBootApplication
@MapperScan("com.atguigu.staservice.mapper")
@ComponentScan("com.atguigu")
@EnableDiscoveryClient
@EnableFeignClients
public class StaApplication {
    public static void main(String[] args) {
        SpringApplication.run(StaApplication.class, args);
    }
}

三、实现服务调用

1、在service_ucenter模块创建接口,统计某一天的注册人数

controller

@GetMapping(value = "countregister/{day}")
public R registerCount(
        @PathVariable String day){
    Integer count = memberService.countRegisterByDay(day);
    return R.ok().data("countRegister", count);
}

service

@Override
public Integer countRegisterByDay(String day) {
    return baseMapper.selectRegisterCount(day);
}

mapper


2、在service_statistics模块创建远程调用接口

创建client包和UcenterClient接口

@Component
@FeignClient("service-ucenter")
public interface UcenterClient {

    @GetMapping(value = "/ucenterservice/member/countregister/{day}")
    public R registerCount(@PathVariable("day") String day);
}

3、在service_statistics模块调用微服务

service

@Service
public class StatisticsDailyServiceImpl extends ServiceImpl implements StatisticsDailyService {

    @Autowired
    private UcenterClient ucenterClient;

    @Override
    public void createStatisticsByDay(String day) {
        //删除已存在的统计对象
        QueryWrapper dayQueryWrapper = new QueryWrapper<>();
        dayQueryWrapper.eq("date_calculated", day);
        baseMapper.delete(dayQueryWrapper);


        //获取统计信息
        Integer registerNum = (Integer) ucenterClient.registerCount(day).getData().get("countRegister");
        Integer loginNum = RandomUtils.nextInt(100, 200);//TODO
        Integer videoViewNum = RandomUtils.nextInt(100, 200);//TODO
        Integer courseNum = RandomUtils.nextInt(100, 200);//TODO

        //创建统计对象
        StatisticsDaily daily = new StatisticsDaily();
        daily.setRegisterNum(registerNum);
        daily.setLoginNum(loginNum);
        daily.setVideoViewNum(videoViewNum);
        daily.setCourseNum(courseNum);
        daily.setDateCalculated(day);

        baseMapper.insert(daily);
    }
}

controller

@PostMapping("{day}")
public R createStatisticsByDate(@PathVariable String day) {
    dailyService.createStatisticsByDay(day);
    return R.ok();
}

四、添加定时任务

1、创建定时任务类,使用cron表达式

复制日期工具类

@Component
public class ScheduledTask {

    @Autowired
    private StatisticsDailyService dailyService;

    /**
     * 测试
     * 每天七点到二十三点每五秒执行一次
     */
    @Scheduled(cron = "0/5 * * * * ?")
    public void task1() {
        System.out.println("*********++++++++++++*****执行了");
    }

    /**
     * 每天凌晨1点执行定时
     */
    @Scheduled(cron = "0 0 1 * * ?")
    public void task2() {
        //获取上一天的日期
        String day = DateUtil.formatDate(DateUtil.addDays(new Date(), -1));
        dailyService.createStatisticsByDay(day);

    }
}

2、在启动类上添加注解

在这里插入图片描述

3、在线生成cron表达式

http://cron.qqe2.com/

02-生成统计数据前端整合

一、nginx配置

location ~ /staservice/ {           
    proxy_pass http://localhost:8008;
}

二、前端页面实现

1、创建api

创建src/api/sta.js

import request from '@/utils/request'

const api_name = '/admin/statistics/daily'
export default {

  createStatistics(day) {
    return request({
      url: `${api_name}/${day}`,
      method: 'post'
    })
  }
}

2、增加路由

src/router/index.js

{
  path: '/statistics/daily',
  component: Layout,
  redirect: '/statistics/daily/create',
  name: 'Statistics',
  meta: { title: '统计分析', icon: 'chart' },
  children: [
    {
      path: 'create',
      name: 'StatisticsDailyCreate',
      component: () => import('@/views/statistics/daily/create'),
      meta: { title: '生成统计' }
    }
  ]
},

3、创建组件

src/views/statistics/daily/create.vue

模板部分


script部分


03-统计数据图表显示

一、ECharts

1、简介

ECharts是百度的一个项目,后来百度把Echart捐给apache,用于图表展示,提供了常规的折线图、柱状图、散点图、饼图、K线图,用于统计的盒形图,用于地理数据可视化的地图、热力图、线图,用于关系数据可视化的关系图、treemap、旭日图,多维数据可视化的平行坐标,还有用于 BI 的漏斗图,仪表盘,并且支持图与图之间的混搭。

官方网站:https://echarts.baidu.com/

2、基本使用

入门参考:官网->文档->教程->5分钟上手ECharts

(1)创建html页面:柱图.html

(2)引入ECharts



(3)定义图表区域


(4)渲染图表


3、折线图

实例参考:官网->实例->官方实例 https://echarts.baidu.com/examples/

折线图.html


二、项目中集成ECharts

1、安装ECharts

npm install --save [email protected]

2、增加路由

src/router/index.js

在统计分析路由中增加子路由

{
    path: 'chart',
    name: 'StatisticsDayChart',
    component: () => import('@/views/statistics/daily/chart'),
    meta: { title: '统计图表' }
}  

3、创建组件

src/views/statistics/daily/chart.vue

模板


js:暂时显示临时数据


三、完成后端业务

1、controller

@GetMapping("show-chart/{begin}/{end}/{type}")
public R showChart(@PathVariable String begin,@PathVariable String end,@PathVariable String type){
    Map map = dailyService.getChartData(begin, end, type);
    return R.ok().data(map);
}

2、service

接口

Map getChartData(String begin, String end, String type);

实现

@Override
public Map getChartData(String begin, String end, String type) {

    QueryWrapper dayQueryWrapper = new QueryWrapper<>();
    dayQueryWrapper.select(type, "date_calculated");
    dayQueryWrapper.between("date_calculated", begin, end);

    List dayList = baseMapper.selectList(dayQueryWrapper);

    Map map = new HashMap<>();
    List dataList = new ArrayList();
    List dateList = new ArrayList();
    map.put("dataList", dataList);
    map.put("dateList", dateList);


    for (int i = 0; i < dayList.size(); i++) {
        Daily daily = dayList.get(i);
        dateList.add(daily.getDateCalculated());
        switch (type) {
            case "register_num":
                dataList.add(daily.getRegisterNum());
                break;
            case "login_num":
                dataList.add(daily.getLoginNum());
                break;
            case "video_view_num":
                dataList.add(daily.getVideoViewNum());
                break;
            case "course_num":
                dataList.add(daily.getCourseNum());
                break;
            default:
                break;
        }
    }

    return map;
}

四、前后端整合

1、创建api

src/api/statistics/daily.js中添加方法

showChart(searchObj) {
    return request({
        url: `${api_name}/show-chart/${searchObj.begin}/${searchObj.end}/${searchObj.type}`,
        method: 'get'
    })
}

2、chart.vue中引入api模块

import daily from '@/api/statistics/daily'

......

3、修改initChartData方法

showChart() {
  this.initChartData()
  // this.setChart()//放在initChartData回调中执行
},

// 准备图表数据
initChartData() {
  daily.showChart(this.searchObj).then(response => {
    // 数据
    this.yData = response.data.dataList

    // 横轴时间
    this.xData = response.data.dateList

    // 当前统计类别
    switch (this.searchObj.type) {
      case 'register_num':
        this.title = '学员注册数统计'
        break
      case 'login_num':
        this.title = '学员登录数统计'
        break
      case 'video_view_num':
        this.title = '课程播放数统计'
        break
      case 'course_num':
        this.title = '每日课程数统计'
        break
    }

    this.setChart()
  })
},

4、修改options中的数据

xAxis: {
    type: 'category',
    data: this.xData//-------绑定数据
},
// y轴是数据轴(连续数据)
yAxis: {
    type: 'value'
},
// 系列列表。每个系列通过 type 决定自己的图表类型
series: [{
    // 系列中的数据内容数组
    data: this.yData,//-------绑定数据
    // 折线图
    type: 'line'
}],

五、样式调整

参考配置手册:https://echarts.baidu.com/option.html#title

1、显示标题

title: {
    text: this.title
},

2、x坐标轴触发提示

tooltip: {
    trigger: 'axis'
},

3、区域缩放

dataZoom: [{
  show: true,
  height: 30,
  xAxisIndex: [
    0
  ],
  bottom: 30,
  start: 10,
  end: 80,
  handleIcon: 'path://M306.1,413c0,2.2-1.8,4-4,4h-59.8c-2.2,0-4-1.8-4-4V200.8c0-2.2,1.8-4,4-4h59.8c2.2,0,4,1.8,4,4V413z',
  handleSize: '110%',
  handleStyle: {
    color: '#d3dee5'

  },
  textStyle: {
    color: '#fff'
  },
  borderColor: '#90979c'
},
{
  type: 'inside',
  show: true,
  height: 15,
  start: 1,
  end: 35
}]

04-Canal数据同步工具

一、Canal介绍

1、应用场景

在前面的统计分析功能中,我们采取了服务调用获取统计数据,这样耦合度高,效率相对较低,目前我采取另一种实现方式,通过实时同步数据库表的方式实现,例如我们要统计每天注册与登录人数,我们只需把会员表同步到统计库中,实现本地统计就可以了,这样效率更高,耦合度更低,Canal就是一个很好的数据库同步工具。canal是阿里巴巴旗下的一款开源项目,纯Java开发。基于数据库增量日志解析,提供增量数据订阅&消费,目前主要支持了MySQL。

2、Canal环境搭建

canal的原理是基于mysql binlog技术,所以这里一定需要开启mysql的binlog写入功能

开启mysql服务: service mysql start

(1)检查binlog功能是否有开启

mysql> show variables like 'log_bin';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| log_bin       | OFF    |
+---------------+-------+
1 row in set (0.00 sec)

(2)如果显示状态为OFF表示该功能未开启,开启binlog功能

1,修改 mysql 的配置文件 my.cnf
vi /etc/my.cnf 
追加内容:
log-bin=mysql-bin     #binlog文件名
binlog_format=ROW     #选择row模式
server_id=1           #mysql实例id,不能和canal的slaveId重复

2,重启 mysql:
service mysql restart   

3,登录 mysql 客户端,查看 log_bin 变量
mysql> show variables like 'log_bin';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| log_bin       | ON|
+---------------+-------+
1 row in set (0.00 sec)
————————————————
如果显示状态为ON表示该功能已开启

(3)在mysql里面添加以下的相关用户和权限

CREATE USER 'canal'@'%' IDENTIFIED BY 'canal';
GRANT SHOW VIEW, SELECT, REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'canal'@'%';
FLUSH PRIVILEGES;

3、下载安装Canal服务

下载地址:

https://github.com/alibaba/canal/releases

(1)下载之后,放到目录中,解压文件

cd /usr/local/canal

canal.deployer-1.1.4.tar.gz

tar zxvf canal.deployer-1.1.4.tar.gz

(2)修改配置文件

vi conf/example/instance.properties
#需要改成自己的数据库信息
canal.instance.master.address=192.168.44.132:3306

#需要改成自己的数据库用户名与密码

canal.instance.dbUsername=canal
canal.instance.dbPassword=canal

#需要改成同步的数据库表规则,例如只是同步一下表
#canal.instance.filter.regex=.*\\..*
canal.instance.filter.regex=guli_ucenter.ucenter_member

注:

mysql 数据解析关注的表,Perl正则表达式.
多个正则之间以逗号(,)分隔,转义符需要双斜杠(\\) 
常见例子:
1.  所有表:.*   or  .*\\..*
2.  canal schema下所有表: canal\\..*
3.  canal下的以canal打头的表:canal\\.canal.*
4.  canal schema下的一张表:canal.test1
5.  多个规则组合使用:canal\\..*,mysql.test1,mysql.test2 (逗号分隔)
注意:此过滤条件只针对row模式的数据有效(ps. mixed/statement因为不解析sql,所以无法准确提取tableName进行过滤)

(3)进入bin目录下启动

sh bin/startup.sh

二、创建canal_client模块

1、在guliedu_parent下创建canal_client模块

统计分析_第3张图片

2、引入相关依赖


    
        org.springframework.boot
        spring-boot-starter-web
    

    
    
        mysql
        mysql-connector-java
    

    
        commons-dbutils
        commons-dbutils
    

    
        org.springframework.boot
        spring-boot-starter-jdbc
    

    
        com.alibaba.otter
        canal.client
    

3、创建application.properties配置文件

# 服务端口
server.port=10000
# 服务名
spring.application.name=canal-client

# 环境设置:dev、test、prod
spring.profiles.active=dev

# mysql数据库连接
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost:3306/guli?serverTimezone=GMT%2B8
spring.datasource.username=root
spring.datasource.password=root

4、编写canal客户端类

import com.alibaba.otter.canal.client.CanalConnector;
import com.alibaba.otter.canal.client.CanalConnectors;
import com.alibaba.otter.canal.protocol.CanalEntry.*;
import com.alibaba.otter.canal.protocol.Message;
import com.google.protobuf.InvalidProtocolBufferException;
import org.apache.commons.dbutils.DbUtils;
import org.apache.commons.dbutils.QueryRunner;
import org.springframework.stereotype.Component;

import javax.annotation.Resource;
import javax.sql.DataSource;
import java.net.InetSocketAddress;
import java.sql.Connection;
import java.sql.SQLException;
import java.util.Iterator;
import java.util.List;
import java.util.Queue;
import java.util.concurrent.ConcurrentLinkedQueue;

@Component
public class CanalClient {

    //sql队列
    private Queue SQL_QUEUE = new ConcurrentLinkedQueue<>();

    @Resource
    private DataSource dataSource;

    /**
     * canal入库方法
     */
    public void run() {

        CanalConnector connector = CanalConnectors.newSingleConnector(new InetSocketAddress("192.168.44.132",
                11111), "example", "", "");
        int batchSize = 1000;
        try {
            connector.connect();
            connector.subscribe(".*\\..*");
            connector.rollback();
            try {
                while (true) {
                    //尝试从master那边拉去数据batchSize条记录,有多少取多少
                    Message message = connector.getWithoutAck(batchSize);
                    long batchId = message.getId();
                    int size = message.getEntries().size();
                    if (batchId == -1 || size == 0) {
                        Thread.sleep(1000);
                    } else {
                        dataHandle(message.getEntries());
                    }
                    connector.ack(batchId);

                    //当队列里面堆积的sql大于一定数值的时候就模拟执行
                    if (SQL_QUEUE.size() >= 1) {
                        executeQueueSql();
                    }
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (InvalidProtocolBufferException e) {
                e.printStackTrace();
            }
        } finally {
            connector.disconnect();
        }
    }

    /**
     * 模拟执行队列里面的sql语句
     */
    public void executeQueueSql() {
        int size = SQL_QUEUE.size();
        for (int i = 0; i < size; i++) {
            String sql = SQL_QUEUE.poll();
            System.out.println("[sql]----> " + sql);

            this.execute(sql.toString());
        }
    }

    /**
     * 数据处理
     *
     * @param entrys
     */
    private void dataHandle(List entrys) throws InvalidProtocolBufferException {
        for (Entry entry : entrys) {
            if (EntryType.ROWDATA == entry.getEntryType()) {
                RowChange rowChange = RowChange.parseFrom(entry.getStoreValue());
                EventType eventType = rowChange.getEventType();
                if (eventType == EventType.DELETE) {
                    saveDeleteSql(entry);
                } else if (eventType == EventType.UPDATE) {
                    saveUpdateSql(entry);
                } else if (eventType == EventType.INSERT) {
                    saveInsertSql(entry);
                }
            }
        }
    }

    /**
     * 保存更新语句
     *
     * @param entry
     */
    private void saveUpdateSql(Entry entry) {
        try {
            RowChange rowChange = RowChange.parseFrom(entry.getStoreValue());
            List rowDatasList = rowChange.getRowDatasList();
            for (RowData rowData : rowDatasList) {
                List newColumnList = rowData.getAfterColumnsList();
                StringBuffer sql = new StringBuffer("update " + entry.getHeader().getTableName() + " set ");
                for (int i = 0; i < newColumnList.size(); i++) {
                    sql.append(" " + newColumnList.get(i).getName()
                            + " = '" + newColumnList.get(i).getValue() + "'");
                    if (i != newColumnList.size() - 1) {
                        sql.append(",");
                    }
                }
                sql.append(" where ");
                List oldColumnList = rowData.getBeforeColumnsList();
                for (Column column : oldColumnList) {
                    if (column.getIsKey()) {
                        //暂时只支持单一主键
                        sql.append(column.getName() + "=" + column.getValue());
                        break;
                    }
                }
                SQL_QUEUE.add(sql.toString());
            }
        } catch (InvalidProtocolBufferException e) {
            e.printStackTrace();
        }
    }

    /**
     * 保存删除语句
     *
     * @param entry
     */
    private void saveDeleteSql(Entry entry) {
        try {
            RowChange rowChange = RowChange.parseFrom(entry.getStoreValue());
            List rowDatasList = rowChange.getRowDatasList();
            for (RowData rowData : rowDatasList) {
                List columnList = rowData.getBeforeColumnsList();
                StringBuffer sql = new StringBuffer("delete from " + entry.getHeader().getTableName() + " where ");
                for (Column column : columnList) {
                    if (column.getIsKey()) {
                        //暂时只支持单一主键
                        sql.append(column.getName() + "=" + column.getValue());
                        break;
                    }
                }
                SQL_QUEUE.add(sql.toString());
            }
        } catch (InvalidProtocolBufferException e) {
            e.printStackTrace();
        }
    }

    /**
     * 保存插入语句
     *
     * @param entry
     */
    private void saveInsertSql(Entry entry) {
        try {
            RowChange rowChange = RowChange.parseFrom(entry.getStoreValue());
            List rowDatasList = rowChange.getRowDatasList();
            for (RowData rowData : rowDatasList) {
                List columnList = rowData.getAfterColumnsList();
                StringBuffer sql = new StringBuffer("insert into " + entry.getHeader().getTableName() + " (");
                for (int i = 0; i < columnList.size(); i++) {
                    sql.append(columnList.get(i).getName());
                    if (i != columnList.size() - 1) {
                        sql.append(",");
                    }
                }
                sql.append(") VALUES (");
                for (int i = 0; i < columnList.size(); i++) {
                    sql.append("'" + columnList.get(i).getValue() + "'");
                    if (i != columnList.size() - 1) {
                        sql.append(",");
                    }
                }
                sql.append(")");
                SQL_QUEUE.add(sql.toString());
            }
        } catch (InvalidProtocolBufferException e) {
            e.printStackTrace();
        }
    }

    /**
     * 入库
     * @param sql
     */
    public void execute(String sql) {
        Connection con = null;
        try {
            if(null == sql) return;
            con = dataSource.getConnection();
            QueryRunner qr = new QueryRunner();
            int row = qr.execute(con, sql);
            System.out.println("update: "+ row);
        } catch (SQLException e) {
            e.printStackTrace();
        } finally {
            DbUtils.closeQuietly(con);
        }
    }
}

5、创建启动类

@SpringBootApplication
public class CanalApplication implements CommandLineRunner {
    @Resource
    private CanalClient canalClient;

    public static void main(String[] args) {
        SpringApplication.run(CanalApplication.class, args);
    }

    @Override
    public void run(String... strings) throws Exception {
        //项目启动,执行canal客户端监听
        canalClient.run();
    }
}

你可能感兴趣的:(可视化,java)