根据黑马程序员C++课程内容,结合讲义,将自己学习C++的过程中将自己觉得有必要记下的笔记进行整理,方便复习回顾,编程环境为VSCode。
编写代码:
#include<iostream>
using namespace std;
int main() {
cout << "Hello world" << endl;
system("pause");
return 0;
}
运行程序:
作用: 在代码中加一些说明和解释,方便自己或其他程序员程序员阅读代码
两种格式
通常放在一行代码的上方,或者一条语句的末尾,对该行代码说明
//这是单行注释
通常放在一段代码的上方,对该段代码做整体说明
/*
这是多行注释
*/
多行注释快捷键:
①注释/取消:Ctrl+Shift+/
②注释:Ctrl+K+C
③取消注释:Ctrl+K+U
提示:编译器在编译代码时,会忽略注释的内容
作用:给一段指定的内存空间起名,方便操作这段内存
语法:数据类型 变量名 = 初始值;
示例:
#include
using namespace std;
int main() {
//变量的定义
//语法:数据类型 变量名 = 初始值
int a = 10;
cout << "a = " << a << endl;
system("pause");
return 0;
}
注意:C++在创建变量时,必须给变量一个初始值,否则会报错
作用: 用于记录程序中不可更改的数据
C++定义常量两种方式
通常在文件上方定义,表示一个常量
#define Day 7
通常在变量定义前加关键字const,修饰该变量为常量,不可修改
const int month = 12;
示例:
//1、宏常量
#define day 7
int main() {
cout << "一周里总共有 " << day << " 天" << endl;
//day = 8; //报错,宏常量不可以修改
//2、const修饰变量
const int month = 12;
cout << "一年里总共有 " << month << " 个月份" << endl;
//month = 24; //报错,常量是不可以修改的
system("pause");
return 0;
}
运行程序:
作用: 关键字是C++中预先保留的单词(标识符)
在定义变量或者常量时候,不要用关键字
C++关键字如下:
提示:在给变量或者常量起名称时候,不要用C++的关键字,否则会产生歧义。
1.6 标识符命名规则
作用:C++规定给标识符(变量、常量)命名时,有一套自己的规则
建议:给标识符命名时,争取做到见名知意的效果,方便自己和他人的阅读
作用:整型变量表示的是整数类型的数据
C++中能够表示整型的类型有以下几种方式,区别在于所占内存空间不同:
数据类型 | 占用空间 | 取值范围 |
---|---|---|
short/short int(短整型) | 2字节 | (-2^15 ~ 2^15-1) |
int(整型) | 4字节 | (-2^31 ~ 2^31-1) |
long/long int(长整形) | Windows为4字节,Linux为4字节(32位),8字节(64位) | (-2^31 ~ 2^31-1) |
long long/long long int(长长整形) | 8字节 | (-2^63 ~ 2^63-1) |
作用: 利用sizeof关键字可以统计数据类型所占内存大小
语法:sizeof( 数据类型 / 变量)
示例:
#include
using namespace std;
int main()
{
cout << "short类型所占内存空间为:" << sizeof(short) << endl;
cout << "int类型所占内存空间为:" << sizeof(int) << endl;
cout << "long类型所占内存空间为:" << sizeof(long) << endl;
cout << "long long类型所占内存空间为:" << sizeof(long long) << endl;
system("pause");
return 0;
}
运行程序:
结论:short < int <= long <= long long(当在Linux64系统下long类型占用内存8字节)
**作用:**用于表示小数
浮点型变量分为两种:
两者的区别在于表示的有效数字范围不同。
数据类型 | 占用空间 | 有效数字范围 |
---|---|---|
float | 4字节 | 7位有效数字 |
double | 8字节 | 15~16位有效数字 |
示例:
#include
using namespace std;
int main()
{
float f1 = 3.14f;
double f2 = 3.14;
cout << "f1 = " << f1 << endl;
cout << "f2 = " << f2 << endl;
cout << "sizeof float:" << sizeof(float) << endl;
cout << "sizeof double:" << sizeof(double) << endl;
//科学技术法
float f3 = 3e2; //3*10的平方
float f4 = 3e-2; //3*0.1的平方
cout << "f3 = " << f3 << endl;
cout << "f4 = " << f4 << endl;
system("pause");
return 0;
}
运行程序:
注意:默认情况下,输出浮点数(无论单双精度)仅显示6位有效数字,想修改位数需要更改VS配置
作用: 字符型变量用于显示单个字符
语法: char ch = 'a';
注意1:在显示字符型变量时,用单引号将字符括起来,不要用双引号
注意2:单引号内只能有一个字符,不可以是字符串
示例:
#include
using namespace std;
int main() {
char ch = 'a';
cout << ch << endl;
cout << sizeof(char) << endl;
//ch = "abcde"; //错误,不可以用双引号
//ch = 'abcde'; //错误,单引号内只能引用一个字符
cout << (int)ch << endl; //查看字符a对应的ASCII码
ch = 97; //可以直接用ASCII给字符型变量赋值
cout << ch << endl;
system("pause");
return 0;
}
运行结果:
作用: 用于表示一些不能显示出来的ASCII字符
现阶段我们常用的转义字符有: \n
\\
\t
转义字符 | 含义 | ASCII码值(十进制) |
---|---|---|
\a | 警报 | 007 |
\b | 退格(BS) ,将当前位置移到前一列 | 008 |
\f | 换页(FF),将当前位置移到下页开头 | 010 |
\n | 换行(LF) ,将当前位置移到下一行开头 | 010 |
\r | 回车(CR) ,将当前位置移到本行开头 | 013 |
\t | 水平制表(HT) (跳到下一个TAB位置) | 009 |
\v | 垂直制表(VT) | 011 |
\\ | 代表一个反斜线字符"\" | 092 |
? | 代表一个问号 | 063 |
\0 | 数字0 | 000 |
\ddd | 8进制转义字符,d范围0~7 | 3位8进制 |
\xhh | 16进制转义字符,h范围0-9,a-f,A~F | 3位16进制 |
示例:
int main() {
cout << "\\" << endl;
cout << "\tHello" << endl;
cout << "\n" << endl;
system("pause");
return 0;
}
作用: 用于表示一串字符
两种风格
char 变量名[] = "字符串值"
示例:
int main() {
char str1[] = "hello world";
cout << str1 << endl;
system("pause");
return 0;
}
注意:C风格的字符串要用双引号括起来
运行结果:
string 变量名 = "字符串值"
示例:
int main() {
string str = "hello world";
cout << str << endl;
system("pause");
return 0;
}
注意1:C++风格字符串,需要加入头文件 #include
注意2:VS2019版本不需要添加头文件#include也可使用C++风格字符串
作用: 布尔数据类型代表真或假的值
bool类型只有两个值:
bool类型占1个字节大小
示例:
int main() {
bool flag = true;
cout << flag << endl; // 1
flag = false;
cout << flag << endl; // 0
cout << "size of bool = " << sizeof(bool) << endl; //1
system("pause");
return 0;
}
运行结果:
作用: 用于从键盘获取数据
关键字: cin
语法: cin >> 变量
示例:
int main(){
//整型输入
int a = 0;
cout << "请输入整型变量:" << endl;
cin >> a;
cout << a << endl;
//浮点型输入
double d = 0;
cout << "请输入浮点型变量:" << endl;
cin >> d;
cout << d << endl;
//字符型输入
char ch = 0;
cout << "请输入字符型变量:" << endl;
cin >> ch;
cout << ch << endl;
//字符串型输入
string str;
cout << "请输入字符串型变量:" << endl;
cin >> str;
cout << str << endl;
//布尔类型输入
bool flag = true;
cout << "请输入布尔型变量:" << endl;
cin >> flag;
cout << flag << endl;
system("pause");
return EXIT_SUCCESS;
}
运行结果:
作用: 用于执行代码的运算
本章我们主要讲解以下几类运算符:
运算符类型 | 作用 |
---|---|
算术运算符 | 用于处理四则运算 |
赋值运算符 | 用于将表达式的值赋给变量 |
比较运算符 | 用于表达式的比较,并返回一个真值或假值 |
逻辑运算符 | 用于根据表达式的值返回真值或假值 |
示例1: 逻辑非
#include
using namespace std;
//逻辑运算符 --- 非
int main() {
int a = 10;
cout << !a << endl; // 0
cout << !!a << endl; // 1
system("pause");
return 0;
}
运行结果:
总结: 真变假,假变真
示例2: 逻辑与
#include
using namespace std;
//逻辑运算符 --- 与
int main() {
int a = 10;
int b = 10;
cout << (a && b) << endl;// 1
a = 10;
b = 0;
cout << (a && b) << endl;// 0
a = 0;
b = 0;
cout << (a && b) << endl;// 0
system("pause");
return 0;
}
总结:逻辑与运算符总结: 同真为真,其余为假
示例3: 逻辑或
#include
using namespace std;
//逻辑运算符 --- 或
int main() {
int a = 10;
int b = 10;
cout << (a || b) << endl;// 1
a = 10;
b = 0;
cout << (a || b) << endl;// 1
a = 0;
b = 0;
cout << (a || b) << endl;// 0
system("pause");
return 0;
}
运行结果:
逻辑或运算符总结: 同假为假,其余为真
C/C++支持最基本的三种程序运行结构:顺序结构、选择结构、循环结构
作用: 执行满足条件的语句
if语句的三种形式
示例:
#include
using namespace std;
int main() {
//选择结构-单行if语句
//输入一个分数,如果分数大于600分,视为考上一本大学,并在屏幕上打印
int score = 0;
cout << "请输入一个分数:" << endl;
cin >> score;
cout << "您输入的分数为: " << score << endl;
//if语句
//注意事项,在if判断语句后面,不要加分号
if (score > 600)
{
cout << "我考上了一本大学!!!" << endl;
}
system("pause");
return 0;
}
运行结果:
注意:if条件表达式后不要加分号
示例:
#include
using namespace std;
int main() {
int score = 0;
cout << "请输入考试分数:" << endl;
cin >> score;
if (score > 600)
{
cout << "我考上了一本大学" << endl;
}
else
{
cout << "我未考上一本大学" << endl;
}
system("pause");
return 0;
}
运行结果:
if(条件1){ 条件1满足执行的语句 }else if(条件2){条件2满足执行的语句}... else{ 都不满足执行的语句 }
示例:
#include
using namespace std;
int main() {
int score = 0;
cout << "请输入考试分数:" << endl;
cin >> score;
if (score > 600)
{
cout << "我考上了一本大学" << endl;
}
else if (score > 500)
{
cout << "我考上了二本大学" << endl;
}
else if (score > 400)
{
cout << "我考上了三本大学" << endl;
}
else
{
cout << "我未考上本科" << endl;
}
system("pause");
return 0;
}
运行结果:
嵌套if语句: 在if语句中,可以嵌套使用if语句,达到更精确的条件判断
案例需求:
#include
using namespace std;
int main() {
int score = 0;
cout << "请输入考试分数:" << endl;
cin >> score;
if (score > 600)
{
cout << "我考上了一本大学" << endl;
if (score > 700)
{
cout << "我考上了北大" << endl;
}
else if (score > 650)
{
cout << "我考上了清华" << endl;
}
else
{
cout << "我考上了人大" << endl;
}
}
else if (score > 500)
{
cout << "我考上了二本大学" << endl;
}
else if (score > 400)
{
cout << "我考上了三本大学" << endl;
}
else
{
cout << "我未考上本科" << endl;
}
system("pause");
return 0;
}
运行结果:
练习案例: 三只小猪称体重
#include
using namespace std;
int main()
{
int num1;
int num2;
int num3;
cout << "请输入小猪A的体重:" << endl;
cin >> num1;
cout << "请输入小猪B的体重:" << endl;
cin >> num2;
cout << "请输入小猪C的体重:" << endl;
cin >> num3;
cout << "小猪A的体重为:" << num1 << endl;
cout << "小猪B的体重为:" << num2 << endl;
cout << "小猪C的体重为:" << num3 << endl;
if(num1 > num2){
if(num1 > num3){
cout << "小猪A最重" << endl;
}else
{
cout << "小猪C最重" << endl;
}
}else
{
if(num2 > num3){
cout << "小猪B最重" << endl;
}else
{
cout << "小猪C最重" << endl;
}
}
system("pause");
return 0;
}
运行结果:
作用: 通过三目运算符实现简单的判断
语法: 表达式1 ? 表达式2 :表达式3
解释:
如果表达式1的值为真,执行表达式2,并返回表达式2的结果;
如果表达式1的值为假,执行表达式3,并返回表达式3的结果。
示例:
#include
using namespace std;
int main() {
int a = 10;
int b = 20;
int c = 0;
c = a > b ? a : b;
cout << "c = " << c << endl;
//C++中三目运算符返回的是变量,可以继续赋值
(a > b ? a : b) = 100;
cout << "a = " << a << endl;
cout << "b = " << b << endl;
cout << "c = " << c << endl;
system("pause");
return 0;
}
运行结果:
总结:和if语句比较,三目运算符优点是短小整洁,缺点是如果用嵌套,结构不清晰
作用: 执行多条件分支语句
语法:
switch(表达式)
{
case 结果1: 执行语句;break;
case 结果2: 执行语句;break;
...
default: 执行语句;break;
}
示例:
#include
using namespace std;
int main() {
//请给电影评分
//10 ~ 9 经典
// 8 ~ 7 非常好
// 6 ~ 5 一般
// 5分以下 烂片
int score = 0;
cout << "请给电影打分" << endl;
cin >> score;
switch (score)
{
case 10:
case 9:
cout << "经典" << endl;
break;
case 8:
cout << "非常好" << endl;
break;
case 7:
case 6:
cout << "一般" << endl;
break;
default:
cout << "烂片" << endl;
break;
}
system("pause");
return 0;
}
运行结果:
注意1:switch语句中表达式类型只能是整型或者字符型
注意2:case里如果没有break,那么程序会一直向下执行
作用: 满足循环条件,执行循环语句
语法: while(循环条件){ 循环语句 }
解释:只要循环条件的结果为真,就执行循环语句
示例:
#include
using namespace std;
int main() {
int num = 0;
while (num < 10)
{
cout << "num = " << num << endl;
num++;
}
system("pause");
return 0;
}
运行结果:
注意:在执行循环语句时候,程序必须提供跳出循环的出口,否则出现死循环
while循环练习案例:猜数字
案例描述: 系统随机生成一个1到100之间的数字,玩家进行猜测,如果猜错,提示玩家数字过大或过小,如果猜对恭喜玩家胜利,并且退出游戏。
#include
using namespace std;
int main()
{
//1.系统生成随机数
int num = rand() % 100 + 1; //rand()%100生成0~99的随机数。rand()%100+1生成0+1~99+1~的随机数
//2.玩家进行猜测
int val;
while (1)
{
cin >> val;
if (val > num)
{
cout << "猜测过大!" << endl;
}
else if (val < num)
{
cout << "猜测过小!" << endl;
}
else
{
cout << "恭喜您猜对了!" << endl;
break;
}
}
system("pause");
return 0;
}
运行结果:
作用: 满足循环条件,执行循环语句
语法: do{ 循环语句 } while(循环条件);
注意: 与while的区别在于do…while会先执行一次循环语句,再判断循环条件
#include
using namespace std;
int main() {
int num = 0;
do
{
cout << num << endl;
num++;
} while (num < 10);
system("pause");
return 0;
}
运行结果:
总结:与while循环区别在于,do…while先执行一次循环语句,再判断循环条件
练习案例:水仙花数
案例描述: 水仙花数是指一个 3 位数,它的每个位上的数字的 3次幂之和等于它本身
例如:1^3 + 5^3+ 3^3 = 153
请利用do…while语句,求出所有3位数中的水仙花数
#include
using namespace std;
int main() {
int num = 100;
do
{
int a = 0; //个位数字(局部变量)
int b = 0; //十位数字(局部变量)
int c = 0; //百位数字(局部变量)
a = num % 10; //求出个位数
b = num / 10 % 10; //求出十位数
c = num / 100; //求出百位数字
if (a * a * a + b * b * b + c * c * c == num)
{
cout << num << endl;
}
num++;
} while (num < 1000);
system("pause");
return 0;
}
运行结果:
作用: 满足循环条件,执行循环语句
语法: for(起始表达式;条件表达式;末尾循环体) { 循环语句; }
示例:
#include
using namespace std;
int main() {
for (int i = 0; i < 10; i++)
{
cout << i << endl;
}
system("pause");
return 0;
}
运行结果:
注意:for循环中的表达式,要用分号进行分隔
总结:while , do…while, for都是开发中常用的循环语句,for循环结构比较清晰,比较常用
练习案例:敲桌子
案例描述: 从1开始数到数字100, 如果数字个位含有7,或者数字十位含有7,或者该数字是7的倍数,我们打印敲桌子,其余数字直接打印输出。
#include
using namespace std;
int main()
{
int i, a,b;
for (i = 1; i <= 100; i++)
{
a = i % 10; //求出个位数
b = i / 10 % 10; //求出十位数
if (a == 7 || b == 7 || i % 7 == 0)
{
cout << "敲桌子" << endl;
}
else
{
cout << i << endl;
}
}
system("pause");
return 0;
}
运行结果:
作用: 在循环体中再嵌套一层循环,解决一些实际问题
示例:
#include
using namespace std;
int main() {
//外层循环执行1次,内层循环执行1轮(10次)
for (int i = 0; i < 10; i++)
{
for (int j = 0; j < 10; j++)
{
cout << "*" << " ";
}
cout << endl;
}
system("pause");
return 0;
}
运行结果:
练习案例: 乘法口诀表
案例描述:利用嵌套循环,实现九九乘法表
#include
using namespace std;
int main()
{
for(int i = 1; i <= 9;i++){
for(int j = 1; j <= i;j++){
if((i*j)/10 == 0){
cout << j << "x" << i << " = " << i*j << " ";
}else
{
cout << j << "x" << i << " = " << i*j << " ";
}
}
cout << endl;
}
system("pause");
return 0;
}
运行结果:
作用: 用于跳出选择结构或者循环结构
break使用的时机:
示例1:
#include
using namespace std;
int main() {
//1、在switch 语句中使用break
cout << "请选择您挑战副本的难度:" << endl;
cout << "1、普通" << endl;
cout << "2、中等" << endl;
cout << "3、困难" << endl;
int num = 0;
cin >> num;
switch (num)
{
case 1:
cout << "您选择的是普通难度" << endl;
break;
case 2:
cout << "您选择的是中等难度" << endl;
break;
case 3:
cout << "您选择的是困难难度" << endl;
break;
}
system("pause");
return 0;
}
运行结果:
示例2:
#include
using namespace std;
int main() {
//2、在循环语句中用break
for (int i = 0; i < 10; i++)
{
if (i == 5)
{
break; //跳出循环语句
}
cout << i << endl;
}
system("pause");
return 0;
}
运行结果:
示例3:
#include
using namespace std;
int main() {
//在嵌套循环语句中使用break,退出内层循环
for (int i = 0; i < 10; i++)
{
for (int j = 0; j < 10; j++)
{
if (j == 5)
{
break;
}
cout << "*" << " ";
}
cout << endl;
}
system("pause");
return 0;
}
运行结果:
作用: 在循环语句中,跳过本次循环中余下尚未执行的语句,继续执行下一次循环
示例:
#include
using namespace std;
int main() {
for (int i = 0; i < 100; i++)
{
if (i % 2 == 0)
{
continue;
}
cout << i << endl;
}
system("pause");
return 0;
}
运行结果:
注意:continue并没有使整个循环终止,而break会跳出循环
作用: 可以无条件跳转语句
语法: goto 标记;
解释: 如果标记的名称存在,执行到goto语句时,会跳转到标记的位置
示例:
#include
using namespace std;
int main() {
cout << "1" << endl;
goto FLAG;
cout << "2" << endl;
cout << "3" << endl;
cout << "4" << endl;
FLAG:
cout << "5" << endl;
system("pause");
return 0;
}
运行结果:
注意:在程序中不建议使用goto语句,以免造成程序流程混乱
所谓数组,就是一个有序的集合,里面存放了相同类型的数据元素
特点1: 数组中的每个数据元素都是相同的数据类型
特点2: 数组是由连续的内存位置组成的
一维数组定义的三种方式:
数据类型 数组名[ 数组长度 ];
数据类型 数组名[ 数组长度 ] = { 值1,值2 ...};
数据类型 数组名[ ] = { 值1,值2 ...};
示例:
#include
using namespace std;
int main() {
//定义方式1
//数据类型 数组名[元素个数];
int score[10];
//利用下标赋值
score[0] = 100;
score[1] = 99;
score[2] = 85;
//利用下标输出
cout << score[0] << endl;
cout << score[1] << endl;
cout << score[2] << endl;
//第二种定义方式
//数据类型 数组名[元素个数] = {值1,值2 ,值3 ...};
//定义和初始化同时进行,相当于方式1两步合一
//如果{}内不足10个数据,剩余数据用0补全
int score2[10] = { 100, 90,80,70,60,50,40,30,20,10 };
//逐个输出
//cout << score2[0] << endl;
//cout << score2[1] << endl;
//一个一个输出太麻烦,因此可以利用循环进行输出
for (int i = 0; i < 10; i++)
{
cout << score2[i] << endl;
}
//定义方式3
//数据类型 数组名[] = {值1,值2 ,值3 ...};
//定义数组时,必须有初始长度([]/{}得有一个声明)
int score3[] = { 100,90,80,70,60,50,40,30,20,10 };
for (int i = 0; i < 10; i++)
{
cout << score3[i] << endl;
}
system("pause");
return 0;
}
运行结果:
注意1:数组名的命名规范与变量名命名规范一致,不要和变量重名
注意2:数组中下标是从0开始索引
注意3:定义方式3为C++特有,C语言无法使用空中括号[ ]的定义方式
一维数组名称的用途:
示例:
#include
using namespace std;
int main() {
//数组名用途
//1、可以获取整个数组占用内存空间大小
int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
cout << "整个数组所占内存空间为: " << sizeof(arr) << endl;
cout << "每个元素所占内存空间为: " << sizeof(arr[0]) << endl;
cout << "数组的元素个数为: " << sizeof(arr) / sizeof(arr[0]) << endl;
//2、可以通过数组名获取到数组首地址
cout << "数组首地址为: " << (int)arr << endl;
cout << "数组中第一个元素地址为: " << (int)&arr[0] << endl;
cout << "数组中第二个元素地址为: " << (int)&arr[1] << endl;
//arr = 100; 错误,数组名是常量,因此不可以赋值
system("pause");
return 0;
}
运行结果:
注意:数组名是常量,不可以赋值
总结1:直接打印数组名,可以查看数组所占内存的首地址
总结2:对数组名进行sizeof,可以获取整个数组占内存空间的大小
练习案例1: 五只小猪称体重
案例描述:
在一个数组中记录了五只小猪的体重,如:int arr[5] = {300,350,200,400,250};
找出并打印最重的小猪体重。
#include
using namespace std;
int main()
{
int arr[5] = {100,200,800,400,500};
int max = arr[0];
for(int i = 0;i<5;i++){
if(max < arr[i]){
max = arr[i];
}
}
cout << "最重的小猪为:" << max << endl;
system("pause");
return 0;
}
运行结果:
练习案例2: 数组元素逆置
案例描述: 请声明一个5个元素的数组,并且将元素逆置.
(如原数组元素为:1,3,2,5,4;逆置后输出结果为:4,5,2,3,1);
#include
using namespace std;
int main()
{
int arr[5] = {1,2,3,4,5};
int len = sizeof(arr)/sizeof(int);
cout << "置换前的元素为:" << endl;
for(int i = 0;i < len;i++){
cout << arr[i] << endl;
}
int temp;
int start = 0;
int end = len - 1;
while(start < end){
temp = arr[start];
arr[start] = arr[end];
arr[end] = temp;
start++;
end--;
}
cout << "置换后的元素为:" << endl;
for(int i = 0;i < len;i++){
cout << arr[i] << endl;
}
system("pause");
return 0;
}
运行结果:
作用:最常用的排序算法,对数组内元素进行排序
示例: 将数组 { 4,2,8,0,5,7,1,3,9 } 进行升序排序
#include
using namespace std;
#define ARR_LEN(array,length){ length = sizeof(array)/sizeof(array[0]); }
int main() {
int arr[9] = { 4,2,8,0,5,7,1,3,9 };
int len;
ARR_LEN(arr, len);//计算出数组长度赋值给len
for (int i = 0; i < len - 1; i++)//或(int i = 1; i < len; i++)
{
for (int j = 0; j < len - 1 - i; j++)//对应或(int j = 0; j < len - i; j++)
{
if (arr[j] > arr[j + 1])
{
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
for (int i = 0; i < 9; i++)
{
cout << arr[i] << endl;
}
system("pause");
return 0;
}
运行结果:
二维数组就是在一维数组上,多加一个维度。
二维数组定义的四种方式:
数据类型 数组名[ 行数 ][ 列数 ];
数据类型 数组名[ 行数 ][ 列数 ] = { {数据1,数据2 } ,{数据3,数据4 }... };
数据类型 数组名[ 行数 ][ 列数 ] = { 数据1,数据2,数据3,数据4...};
数据类型 数组名[ ][ 列数 ] = { 数据1,数据2,数据3,数据4...};
建议:以上4种定义方式,利用第二种更加直观,提高代码的可读性
示例:
#include
using namespace std;
int main() {
//方式1
//数组类型 数组名 [行数][列数]
int arr[2][3];
arr[0][0] = 1;
arr[0][1] = 2;
arr[0][2] = 3;
arr[1][0] = 4;
arr[1][1] = 5;
arr[1][2] = 6;
for (int i = 0; i < 2; i++)
{
for (int j = 0; j < 3; j++)
{
cout << arr[i][j] << " ";
}
cout << endl;
}
//方式2
//数据类型 数组名[行数][列数] = { {数据1,数据2 } ,{数据3,数据4 } };
int arr2[2][3] =
{
{1,2,3},
{4,5,6}
};
//方式3
//数据类型 数组名[行数][列数] = { 数据1,数据2 ,数据3,数据4 };
int arr3[2][3] = { 1,2,3,4,5,6 };
//方式4
//数据类型 数组名[][列数] = { 数据1,数据2 ,数据3,数据4 };
int arr4[][3] = { 1,2,3,4,5,6 };
system("pause");
return 0;
}
运行截图:
总结:在定义二维数组时,如果初始化了数据,可以省略行数
示例:
#include
using namespace std;
int main() {
//二维数组数组名
int arr[2][3] =
{
{1,2,3},
{4,5,6}
};
cout << "二维数组大小: " << sizeof(arr) << endl;
cout << "二维数组一行大小: " << sizeof(arr[0]) << endl;
cout << "二维数组元素大小: " << sizeof(arr[0][0]) << endl;
cout << "二维数组行数: " << sizeof(arr) / sizeof(arr[0]) << endl;
cout << "二维数组列数: " << sizeof(arr[0]) / sizeof(arr[0][0]) << endl;
//地址
cout << "二维数组首地址:" << arr << endl;
cout << "二维数组第一行地址:" << arr[0] << endl;
cout << "二维数组第二行地址:" << arr[1] << endl;
cout << "二维数组第一个元素地址:" << &arr[0][0] << endl;
cout << "二维数组第二个元素地址:" << &arr[0][1] << endl;
system("pause");
return 0;
}
运行结果:
总结1:二维数组名就是这个数组的首地址
总结2:对二维数组名进行sizeof时,可以获取整个二维数组占用的内存空间大小
考试成绩统计:
案例描述:有三名同学(张三,李四,王五),在一次考试中的成绩分别如下表,请分别输出三名同学的总成绩
项目 | 语文 | 数学 | 英语 |
---|---|---|---|
张三 | 100 | 100 | 100 |
李四 | 90 | 50 | 100 |
王五 | 60 | 70 | 80 |
参考答案:
#include
using namespace std;
int main() {
int scores[3][3] =
{
{100,100,100},
{90,50,100},
{60,70,80},
};
string names[3] = { "张三","李四","王五" };
for (int i = 0; i < 3; i++)
{
int sum = 0;
for (int j = 0; j < 3; j++)
{
sum += scores[i][j];
}
cout << names[i] << "同学总成绩为: " << sum << endl;
}
system("pause");
return 0;
}
运行结果:
作用: 将一段经常使用的代码封装起来,减少重复代码
一个较大的程序,一般分为若干个程序块,每个模块实现特定的功能。
函数的定义一般主要有5个步骤:
1、返回值类型
2、函数名
3、参数列表
4、函数体语句
5、return 表达式
语法:
返回值类型 函数名 (参数列表)
{
函数体语句
return表达式
}
示例: 定义一个加法函数,实现两个数相加
//函数定义
int add(int num1, int num2)
{
int sum = num1 + num2;
return sum;
}
功能: 使用定义好的函数
语法: 函数名(参数)
示例:
#include
using namespace std;
//函数定义
int add(int num1, int num2) //定义中的num1,num2称为形式参数,简称形参
{
int sum = num1 + num2;
return sum;
}
int main() {
int a = 10;
int b = 10;
//调用add函数
int sum = add(a, b);//调用时的a,b称为实际参数,简称实参
cout << "sum = " << sum << endl;
a = 100;
b = 100;
sum = add(a, b);
cout << "sum = " << sum << endl;
system("pause");
return 0;
}
运行结果:
总结:函数定义里小括号内称为形参,函数调用时传入的参数称为实参
示例:
#include
using namespace std;
void swap(int num1, int num2)
{
cout << "交换前:" << endl;
cout << "num1 = " << num1 << endl;
cout << "num2 = " << num2 << endl;
int temp = num1;
num1 = num2;
num2 = temp;
cout << "交换后:" << endl;
cout << "num1 = " << num1 << endl;
cout << "num2 = " << num2 << endl;
//return ; 当函数声明时候,不需要返回值,可以不写return
}
int main() {
int a = 10;
int b = 20;
swap(a, b);
cout << "mian中的 a = " << a << endl;
cout << "mian中的 b = " << b << endl;
system("pause");
return 0;
}
运行结果:
常见的函数样式有4种
示例:
//函数常见样式
//1、 无参无返
void test01()
{
//void a = 10; //无类型关键字不可以创建变量,原因是无法分配内存
cout << "this is test01" << endl;
//test01(); 函数调用
}
//2、 有参无返
void test02(int a)
{
cout << "this is test02" << endl;
cout << "a = " << a << endl;
}
//3、无参有返
int test03()
{
cout << "this is test03 " << endl;
return 10;
}
//4、有参有返
int test04(int a, int b)
{
cout << "this is test04 " << endl;
int sum = a + b;
return sum;
}
作用: 提前告诉编译器函数的名称及如何调用函数。函数的实际主体可以单独定义。
示例:
#include
using namespace std;
//声明可以多次,定义只能一次
//声明
int max(int a, int b);
int max(int a, int b);
//定义
int max(int a, int b)
{
return a > b ? a : b;
}
int main() {
int a = 100;
int b = 200;
cout << max(a, b) << endl;
system("pause");
return 0;
}
运行结果:
作用: 让代码结构更加清晰
函数分文件编写一般有4个步骤
示例:
//swap.h文件
#include
using namespace std;
//实现两个数字交换的函数声明
void swap(int a, int b);
//swap.cpp文件
#include "swap.h"
void swap(int a, int b)
{
int temp = a;
a = b;
b = temp;
cout << "a = " << a << endl;
cout << "b = " << b << endl;
}
//main函数文件
#include //<>表示直接从系统类库目录中查找头文件
using namespace std;
#include "swap.h"//双引号表示从项目当前目录下查找头文件,找不到再从项目配置的头文件引用目录中查找,还找不到再去系统类库目录中查找
int main() {
int a = 100;
int b = 200;
swap(a, b);
system("pause");
return 0;
}
注意:不可以在头文件中定义函数,否则在多次包含头文件时会发生重定义报错
指针的作用: 可以通过指针间接访问内存
指针变量定义语法: 数据类型 * 变量名; 或 数据类型 *变量名; 或 数据类型* 变量名;
示例:
#include
using namespace std;
int main() {
//1、指针的定义
int a = 10; //定义整型变量a
//指针定义语法: 数据类型 * 变量名 ;
int * p; //定义整型指针变量p
//指针变量赋值
p = &a; //指针指向变量a的地址
cout << &a << endl; //打印数据a的地址
cout << p << endl; //打印指针变量p
//2、指针的使用
//通过*操作指针变量指向的内存
cout << "*p = " << *p << endl;
system("pause");
return 0;
}
运行结果:
指针变量和普通变量的区别
总结1: 我们可以通过 & 符号 获取变量的地址
总结2:利用指针可以记录地址
总结3:对指针变量解引用(*p),可以找到并操作指针指向的内存(内存中的数据)
提问:指针也是种数据类型,那么这种数据类型占用多少内存空间?
示例:
#include
using namespace std;
int main() {
int a = 10;
int * p;
p = &a; //指针指向数据a的地址
cout << *p << endl; //* 解引用
cout << sizeof(p) << endl;
cout << sizeof(char *) << endl;
cout << sizeof(float *) << endl;
cout << sizeof(double *) << endl;
system("pause");
return 0;
}
运行结果:
总结:所有指针类型在32位操作系统(32位编译器环境)下是4个字节,64位为8个字节
空指针: 指针变量指向内存中编号为0的空间
用途: 初始化指针变量
注意: 空指针指向的内存是不可以访问的
示例1:空指针
#include
using namespace std;
int main() {
//指针变量p指向内存地址编号为0的空间
int * p = NULL;
//访问空指针报错
//内存编号0 ~255为系统占用内存,不允许用户访问
cout << *p << endl;
system("pause");
return 0;
}
运行结果:
不让运行
野指针: 指针变量指向非法的内存空间
示例2:野指针
#include
using namespace std;
int main() {
//指针变量p指向内存地址编号为0x1100的空间
int * p = (int *)0x1100;
//访问野指针报错
cout << *p << endl;
system("pause");
return 0;
}
运行结果:
不让运行
总结:空指针和野指针都不是我们申请的空间,因此不要访问。
const修饰指针有三种情况
示例:
#include
using namespace std;
int main() {
int a = 10;
int b = 10;
//const修饰的是指针,指针指向可以改,指针指向的值不可以更改
const int* p1 = &a;
或者写成
int const* p1 = &a;
p1 = &b; //正确
//*p1 = 100; 报错
//const修饰的是常量,指针指向不可以改,指针指向的值可以更改
int* const p2 = &a;
//p2 = &b; //错误
*p2 = 100; //正确
//const既修饰指针又修饰常量
const int* const p3 = &a;
//p3 = &b; //错误
//*p3 = 100; //错误
system("pause");
return 0;
}
技巧:看const右侧紧跟着的是指针还是常量, 是指针就是常量指针、限定*操作;是常量就是指针常量、限定常量改变
作用: 利用指针访问数组中元素
示例:
#include
using namespace std;
int main() {
int arr[] = { 1,2,3,4,5,6,7,8,9,10 };
int * p = arr; //指向数组的指针
cout << "第一个元素: " << arr[0] << endl;
cout << "指针访问第一个元素: " << *p << endl;
for (int i = 0; i < 10; i++)
{
//利用指针遍历数组
cout << *p << endl;
p++;
}
system("pause");
return 0;
}
运行结果:
作用: 利用指针作函数参数,可以修改实参的值
示例:
#include
using namespace std;
//值传递
void swap1(int a ,int b)
{
int temp = a;
a = b;
b = temp;
}
//地址传递
void swap2(int * p1, int *p2)
{
int temp = *p1;
*p1 = *p2;
*p2 = temp;
}
int main() {
int a = 10;
int b = 20;
swap1(a, b); // 值传递不会改变实参
swap2(&a, &b); //地址传递会改变实参
cout << "a = " << a << endl;
cout << "b = " << b << endl;
system("pause");
return 0;
}
运行结果:
总结:如果不想修改实参,就用值传递,如果想修改实参,就用地址传递
案例描述: 封装一个函数,利用冒泡排序,实现对整型数组的升序排序
例如数组:int arr[10] = { 4,3,6,9,1,2,10,8,7,5 };
示例:
#include
using namespace std;
//冒泡排序函数
void bubbleSort(int * arr, int len) //int * arr 也可以写为int arr[]
{
for (int i = 0; i < len - 1; i++)
{
for (int j = 0; j < len - 1 - i; j++)
{
if (arr[j] > arr[j + 1])
{
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
//打印数组函数
void printArray(int arr[], int len)
{
for (int i = 0; i < len; i++)
{
cout << arr[i] << endl;
}
}
int main() {
int arr[10] = { 4,3,6,9,1,2,10,8,7,5 };
int len = sizeof(arr) / sizeof(int);
bubbleSort(arr, len);
printArray(arr, len);
system("pause");
return 0;
}
运行结果:
总结:当数组名传入到函数作为参数时,被退化为指向首元素的指针
注意:所以函数内 sizeof(arr) 计算为指针内存大小4(bytes),无法通过 sizeof(arr) / sizeof(arr[0]) 在函数内部计算出数组长度
结构体属于用户自定义的数据类型,允许用户存储不同的数据类型
语法(自定义结构体): struct 结构体名 { 结构体成员列表 };
通过结构体创建变量的方式有三种:
示例:
#include
using namespace std;
//结构体定义
struct student
{
//成员列表
string name; //姓名
int age; //年龄
int score; //分数
}stu3; //结构体变量创建方式3
int main() {
//结构体变量创建方式1
struct student stu1; //struct 关键字可以省略
stu1.name = "张三";
stu1.age = 18;
stu1.score = 100;
cout << "姓名:" << stu1.name << " 年龄:" << stu1.age << " 分数:" << stu1.score << endl;
//结构体变量创建方式2
struct student stu2 = { "李四",19,60 };
cout << "姓名:" << stu2.name << " 年龄:" << stu2.age << " 分数:" << stu2.score << endl;
stu3.name = "王五";
stu3.age = 18;
stu3.score = 80;
cout << "姓名:" << stu3.name << " 年龄:" << stu3.age << " 分数:" << stu3.score << endl;
system("pause");
return 0;
}
运行结果:
总结1:定义结构体时的关键字是struct,不可省略
总结2:创建结构体变量时,关键字struct可以省略
总结3:结构体变量利用操作符 ‘’.‘’ 访问成员
作用: 将自定义的结构体放入到数组中方便维护
语法(创建变量): struct 结构体名 数组名[元素个数] = { {} , {} , ... {} }
示例:
#include
using namespace std;
//结构体定义
struct student
{
//成员列表
string name; //姓名
int age; //年龄
int score; //分数
};
int main() {
//结构体数组
struct student arr[3]=
{
{"张三",18,80 },
{"李四",19,60 },
{"王五",20,70 }
};
for (int i = 0; i < 3; i++)
{
cout << "姓名:" << arr[i].name << " 年龄:" << arr[i].age << " 分数:" << arr[i].score << endl;
}
system("pause");
return 0;
}
运行结果:
作用: 通过指针访问结构体中的成员
->
可以通过结构体指针访问结构体属性示例:
#include
using namespace std;
//结构体定义
struct student
{
//成员列表
string name; //姓名
int age; //年龄
int score; //分数
};
int main() {
struct student stu = { "张三",18,100, };
struct student * p = &stu;
p->score = 80; //指针通过 -> 操作符可以访问成员
cout << "姓名:" << p->name << " 年龄:" << p->age << " 分数:" << p->score << endl;
system("pause");
return 0;
}
运行结果:
作用: 结构体中的成员可以是另一个结构体
例如: 每个老师辅导一个学员,一个老师的结构体中,记录一个学生的结构体
示例:
#include
using namespace std;
//学生结构体定义
struct student
{
//成员列表
string name; //姓名
int age; //年龄
int score; //分数
};
//教师结构体定义
struct teacher
{
//成员列表
int id; //职工编号
string name; //教师姓名
int age; //教师年龄
struct student stu; //子结构体 学生
};
int main() {
struct teacher t1;
t1.id = 10000;
t1.name = "老王";
t1.age = 40;
t1.stu.name = "张三";
t1.stu.age = 18;
t1.stu.score = 100;
cout << "教师 职工编号: " << t1.id << " 姓名: " << t1.name << " 年龄: " << t1.age << endl;
cout << "辅导学员 姓名: " << t1.stu.name << " 年龄:" << t1.stu.age << " 考试分数: " << t1.stu.score << endl;
system("pause");
return 0;
}
运行结果:
总结:在结构体中可以定义另一个结构体变量作为成员,用来解决实际问题
注意:子结构体的自定义需要在使用它的父结构体的前面
作用: 将结构体作为参数向函数中传递
传递方式有两种:
示例:
#include
using namespace std;
//学生结构体定义
struct student
{
//成员列表
string name; //姓名
int age; //年龄
int score; //分数
};
//值传递
void printStudent(student stu )
{
stu.age = 28;
cout << "子函数中 姓名:" << stu.name << " 年龄: " << stu.age << " 分数:" << stu.score << endl;
}
//地址传递
void printStudent2(student *stu)
{
stu->age = 28;
cout << "子函数中 姓名:" << stu->name << " 年龄: " << stu->age << " 分数:" << stu->score << endl;
}
int main() {
student stu = { "张三",18,100 };
//值传递
printStudent(stu);
cout << "主函数中 姓名:" << stu.name << " 年龄: " << stu.age << " 分数:" << stu.score << endl;
cout << endl;
//地址传递
printStudent2(&stu);
cout << "主函数中 姓名:" << stu.name << " 年龄: " << stu.age << " 分数:" << stu.score << endl;
system("pause");
return 0;
}
运行结果:
总结:如果不想修改主函数中的数据,用值传递,反之用地址传递
注意:结构体的自定义同样要在使用它的函数之前
案例描述:
学校正在做毕设项目,每名老师带领5个学生,总共有3名老师,需求如下
设计学生和老师的结构体,其中在老师的结构体中,有老师姓名和一个存放5名学生的数组作为成员
学生的成员有姓名、考试分数
创建数组存放3名老师,通过函数给每个老师及所带的学生赋值
最终打印出老师数据以及老师所带的学生数据。
示例:
#include
#include
#include
using namespace std;
struct Student{
string sName;
int score;
};
struct Teacher{
string tName;
struct Student sArray[5];
};
void allocateSpace(struct Teacher tArray[],int len)
{
string t_Name = "老师";
string s_Name = "学生";
string nameSeed = "ABCDE";
for(int i = 0;i < len;i++){
tArray[i].tName = t_Name;
tArray[i].tName += nameSeed[i];
for(int j = 0;j < 5;j++){
tArray[i].sArray[j].sName = s_Name;
tArray[i].sArray[j].sName = nameSeed[j];
tArray[i].sArray[j].score = rand() % 61 + 40;
}
}
}
void printTarray(struct Teacher tArray[],int len)
{
for(int i = 0;i < len;i++){
cout << tArray[i].tName << endl;
for(int j = 0;j < 5;j++){
cout << "\t" << tArray[i].sArray[j].sName << "的成绩为:" << tArray[i].sArray[j].score << endl;
}
}
}
int main()
{
srand((unsigned int)time(NULL));
struct Teacher tArray[3];
int len = sizeof(tArray)/sizeof(Teacher);
allocateSpace(tArray,len);
printTarray(tArray,len);
system("pause");
return 0;
}
运行结果:
案例描述:
设计一个英雄的结构体,包括成员姓名,年龄,性别;创建结构体数组,数组中存放5名英雄。
通过冒泡排序的算法,将数组中的英雄按照年龄进行升序排序,最终打印排序后的结果。
五名英雄信息如下:
{"刘备",23,"男"},
{"关羽",22,"男"},
{"张飞",20,"男"},
{"赵云",21,"男"},
{"貂蝉",19,"女"},
示例:
#include
#include
using namespace std;
struct hero
{
string name;
int age;
string sex;
};
void bubbleSort(struct hero harr[],int len)
{
for(int i = 0;i < len - 1;i++){
for(int j = 0;j < len - i - 1;j++){
if(harr[j].age > harr[j+1].age){
struct hero temp = harr[j];
harr[j] = harr[j+1];
harr[j+1] = temp;
}
}
}
}
void printHero(struct hero harr[],int len)
{
for(int i = 0;i < len;i++){
cout << "姓名:" << harr[i].name << " 年龄:" << harr[i].age << " 性别:" << harr[i].sex << endl;
}
}
int main()
{
struct hero harr[5] = {
{"刘备",23,"男"},
{"关羽",22,"男"},
{"张飞",20,"男"},
{"赵云",21,"男"},
{"貂蝉",19,"女"},
};
int len = sizeof(harr)/sizeof(harr[0]);
cout << "排序前打印:" << endl;
printHero(harr, len);
bubbleSort(harr,len);
cout << "排序前后打印:" << endl;
printHero(harr, len);
system("pause");
return 0;
}
运行结果:
基础部分就到这里。
十年磨一剑,一朝试锋芒