粒子群优化算法求解TSP旅行商问题C++(2020.11.12)

PSO优化算法求解TSP问题的C++实现

  • 1、输入数据文件:bayg29.tsp
  • 2、头文件
  • 3、所需的类
    • 3.1 城市类City:
    • 3.2 包含城市的地图类Graph:
    • 3.3 粒子类Particle:
    • 3.4 粒子群优化算法类PSO:
  • 4、自定义函数
    • 4.1 随机生成1~n的一个排列的函数
    • 4.2 粒子适应值计算函数
    • 4.3 粒子路径有效性调整函数
  • 5、全局变量
  • 6、主函数
  • 7、运行结果
    • 7.1 控制台运行结果:
    • 7.2 生成的result.txt文件结果:
  • 8 Matlab绘制最优路径结果
    • 8.1 Matlab导入数据
    • 8.2 编写tspplot.m脚本文件
    • 8.3 脚本运行结果
  • 附录(完整代码)

1、输入数据文件:bayg29.tsp

29个城市的编号和坐标数据如下所示;

   1    1150.0  1760.0
   2     630.0  1660.0
   3      40.0  2090.0
   4     750.0  1100.0
   5     750.0  2030.0
   6    1030.0  2070.0
   7    1650.0   650.0
   8    1490.0  1630.0
   9     790.0  2260.0
  10     710.0  1310.0
  11     840.0   550.0
  12    1170.0  2300.0
  13     970.0  1340.0
  14     510.0   700.0
  15     750.0   900.0
  16    1280.0  1200.0
  17     230.0   590.0
  18     460.0   860.0
  19    1040.0   950.0
  20     590.0  1390.0
  21     830.0  1770.0
  22     490.0   500.0
  23    1840.0  1240.0
  24    1260.0  1500.0
  25    1280.0   790.0
  26     490.0  2130.0
  27    1460.0  1420.0
  28    1260.0  1910.0
  29     360.0  1980.0

2、头文件

#include 
#include 
#include 
#include 
#include 
using namespace std;

3、所需的类

代码中用到了四个类:City、Graph、Particle和PSO。

3.1 城市类City:

class City
{
public:
	string name;//城市名称
	double x, y;//城市点的二维坐标
	void shuchu()
	{
		std::cout << name + ":" << "(" << x << "," << y << ")" << endl;
	}
};

3.2 包含城市的地图类Graph:

class Graph
{
public:
	City city[citycount];//城市数组
	double distance[citycount][citycount];//城市间的距离矩阵
	void Readcoordinatetxt(string txtfilename)//读取城市坐标文件的函数
	{
		ifstream myfile(txtfilename, ios::in);
		double x = 0, y = 0;
		int z = 0;
		if (!myfile.fail())
		{
			int i = 0;
			while (!myfile.eof() && (myfile >> z >> x >> y))
			{
				city[i].name = to_string(_Longlong(z));//城市名称转化为字符串
				city[i].x = x; city[i].y = y;
				i++;
			}
		}
		else
			cout << "文件不存在";
		myfile.close();//计算城市距离矩阵
		for (int i = 0; i < citycount; i++)
			for (int j = 0; j < citycount; j++)
			{
				distance[i][j] = sqrt((pow((city[i].x - city[j].x), 2) + pow((city[i].y - city[j].y), 2)) / 10.0);//计算城市ij之间的伪欧式距离
				if (round(distance[i][j] < distance[i][j]))distance[i][j] = round(distance[i][j]) + 1;
				else distance[i][j] = round(distance[i][j]);
			}
	}
	void shuchu()
	{
		cout << "城市名称 " << "坐标x" << " " << "坐标y" << endl;
		for (int i = 0; i < citycount; i++)
			city[i].shuchu();
		cout << "距离矩阵: " << endl;
		for (int i = 0; i < citycount; i++)
		{
			for (int j = 0; j < citycount; j++)
			{
				if (j == citycount - 1)
					std::cout << distance[i][j] << endl;
				else
					std::cout << distance[i][j] << "  ";
			}
		}
	}
};

3.3 粒子类Particle:

class Particle
{
	public:
		int *x;//粒子的位置
		int *v;//粒子的速度
		double fitness;
		void Init()
		{
			x = new int[citycount];
			v = new int[citycount];
			int *M = Random_N(citycount);
			for (int i = 0; i < citycount; i++)
				x[i] = *(M + i);
			fitness = Evaluate(x);
			for (int i = 0; i < citycount; i++)
			{
				v[i] = (int)distribution1(random);
			}
		}
		void shuchu()
		{
			for (int i = 0; i < citycount; i++)
			{
				if (i == citycount - 1)
					std::cout << x[i] <<") = "<<fitness<< endl;
				else if(i==0)
					std::cout <<"f("<< x[i] << ",";
				else
					std::cout << x[i] << ",";
			}
		}
};

3.4 粒子群优化算法类PSO:

class PSO
{
	public:
		Particle *oldparticle;
		Particle *pbest, gbest;
		double c1, c2,w;
		int Itetime;
		int popsize;

		void Init(int Pop_Size,int itetime,double C1,double C2,double W)
		{
			Itetime = itetime;
			c1 = C1;
			c2 = C2;
			w = W;
			popsize = Pop_Size;
			oldparticle = new Particle[popsize];
			pbest = new Particle[popsize];
			for (int i = 0; i < popsize; i++)
			{
				oldparticle[i].Init();
				pbest[i].Init();
				for (int j = 0; j < citycount; j++)
				{
					pbest[i].x[j] = oldparticle[i].x[j];
					pbest[i].fitness = oldparticle[i].fitness;
				}
			}
			gbest.Init(); gbest.fitness = INFINITY;//为全局最优粒子初始化
			for (int i = 0; i < popsize; i++)
			{
				if (pbest[i].fitness < gbest.fitness)
				{
					gbest.fitness = pbest[i].fitness;
					for (int j = 0; j < citycount; j++)
						gbest.x[j] = pbest[i].x[j];
				}
			}
		}
		void Shuchu()
		{
			for (int i = 0; i < popsize; i++)
			{
				std::cout << "粒子" << i + 1<<"->";
				oldparticle[i].shuchu();
			}
		}
		void PSO_TSP(int Pop_size,int itetime, double C1, double C2, double W,double Vlimitabs,string filename)
		{
			Map_City.Readcoordinatetxt(filename);
			Map_City.shuchu();
			vmax = Vlimitabs; vmin = -Vlimitabs;
			Init(Pop_size,itetime,C1,C2,W);
			std::cout << "初始化后的种群如下:" << endl;
			Shuchu();
			ofstream outfile;
			outfile.open("result.txt", ios::trunc);
			outfile << "城市名称 " << "坐标x" << " " << "坐标y" << endl;
			for (int i = 0; i < citycount; i++)
				outfile << Map_City.city[i].name << " " << Map_City.city[i].x << " " << Map_City.city[i].y << endl;
			outfile << "距离矩阵: " << endl;
			for (int i = 0; i < citycount; i++)
			{
				for (int j = 0; j < citycount; j++)
				{
					if (j == citycount - 1)
						outfile << Map_City.distance[i][j] << endl;
					else
						outfile << Map_City.distance[i][j] << "  ";
				}
			}
			outfile << "初始化后的种群如下:" << endl;
			for (int i = 0; i < popsize; i++)
			{
				outfile << "粒子" << i + 1 << "->";
				for (int j = 0; j < citycount; j++)
				{
					if (j == citycount - 1)
						outfile << oldparticle[i].x[j] << ") = " << oldparticle[i].fitness << endl;
					else if (j == 0)
						outfile << "f(" << oldparticle[i].x[j] << ",";
					else
						outfile << oldparticle[i].x[j] << ",";
				}
			}
			for (int ite = 0; ite < Itetime; ite++)
			{
				for (int i = 0; i < popsize; i++)
				{
					//更新粒子速度和位置
					for (int j = 0; j < citycount; j++)
					{
						oldparticle[i].v[j] = (int)(w*oldparticle[i].v[j] + c1*distribution(random)*(pbest[i].x[j] - oldparticle[i].x[j]) + c2*distribution(random)*(gbest.x[j] - oldparticle[i].x[j]));
						if (oldparticle[i].v[j] > vmax)//粒子速度越界调整
							oldparticle[i].v[j] = (int)vmax;
						else if (oldparticle[i].v[j] < vmin)
							oldparticle[i].v[j] = (int)vmin;
						oldparticle[i].x[j] += oldparticle[i].v[j];
						if (oldparticle[i].x[j] > citycount)oldparticle[i].x[j] = citycount;//粒子位置越界调整
						else if (oldparticle[i].x[j] < 1) oldparticle[i].x[j] = 1;
					}
					//粒子位置有效性调整,必须满足解空间的条件
					Adjuxt_validParticle(oldparticle[i]);
					oldparticle[i].fitness = Evaluate(oldparticle[i].x);
					pbest[i].fitness = Evaluate(pbest[i].x);
					if (oldparticle[i].fitness < pbest[i].fitness)
					{
						for (int j = 0; j < citycount; j++)
							pbest[i].x[j] = oldparticle[i].x[j];
					}//更新单个粒子的历史极值
					for (int j = 0; j < citycount; j++)
						gbest.x[j] = pbest[i].x[j];//更新全局极值
					for (int k = 0; k < popsize && k!=i; k++)
					{
						if (Evaluate(pbest[k].x) < Evaluate(gbest.x))
						{
							for (int j = 0; j < citycount; j++)
								gbest.x[j] = pbest[k].x[j];
							gbest.fitness = Evaluate(gbest.x);
						}
					}
				}
				outfile << "第"<<ite+1<<"次迭代后的种群如下:" << endl;
				for (int i = 0; i < popsize; i++)
				{
					outfile << "粒子" << i + 1 << "->";
					for (int j = 0; j < citycount; j++)
					{
						if (j == citycount - 1)
							outfile << oldparticle[i].x[j] << ") = " << oldparticle[i].fitness << endl;
						else if (j == 0)
							outfile << "f(" << oldparticle[i].x[j] << ",";
						else
							outfile << oldparticle[i].x[j] << ",";
					}
				}
				std::cout << "第" <<ite+1<< "次迭代后的最好粒子:";
				outfile << "第" << ite + 1 << "次迭代后的最好粒子:"<<endl;
				for (int j = 0; j < citycount; j++)
				{
					if (j == citycount - 1)
						outfile << gbest.x[j] << ") = " << gbest.fitness << endl;
					else if (j == 0)
						outfile << "f(" << gbest.x[j] << ",";
					else
						outfile << gbest.x[j] << ",";
				}
				gbest.shuchu();
			}
			outfile.close();
		}
};

4、自定义函数

4.1 随机生成1~n的一个排列的函数

int * Random_N(int n)
{
	int *geti;
	geti = new int[n];
	int j = 0;
	while (j<n)
	{
		while (true)
		{
			int flag = -1;
			int temp = rand() % n + 1;
			if (j > 0)
			{
				int k = 0;
				for (; k < j; k++)
				{
					if (temp == *(geti + k))break;
				}
				if (k == j)
				{
					*(geti + j) = temp;
					flag = 1;
				}
			}
			else
			{
				*(geti + j) = temp;
				flag = 1;
			}
			if (flag == 1)break;
		}
		j++;
	}
	return geti;
}

4.2 粒子适应值计算函数

double Evaluate(int *x)//计算粒子适应值的函数
{
	double fitnessvalue = 0;
	for (int i = 0; i < citycount - 1; i++)
		fitnessvalue += Map_City.distance[x[i] - 1][x[i + 1] - 1];
	fitnessvalue += Map_City.distance[x[citycount - 1] - 1][x[0] - 1];
	return fitnessvalue;
}

4.3 粒子路径有效性调整函数

void Adjuxt_validParticle(Particle p)//调整粒子有效性的函数,使得粒子的位置符合TSP问题解的一个排列
{
	int route[citycount];//1-citycount
	bool flag[citycount];//对应route数组中是否在粒子的位置中存在的数组,参考数组为route
	int biaoji[citycount];//对粒子每个元素进行标记的数组,参考数组为粒子位置x
	for (int j = 0; j < citycount; j++)
	{
		route[j] = j + 1;
		flag[j] = false;
		biaoji[j] = 0;
	}
	//首先判断粒子p的位置中是否有某个城市且唯一,若有且唯一,则对应flag的值为true,
	for (int j = 0; j < citycount; j++)
	{
		int num = 0;
		for (int k = 0; k < citycount; k++)
		{
			if (p.x[k] == route[j])
			{
				biaoji[k] = 1;//说明粒子中的k号元素对应的城市在route中,并且是第一次出现才进行标记
				num++; break;
			}
		}
		if (num == 0) flag[j] = false;//粒子路线中没有route[j]这个城市
		else if (num == 1) flag[j] = true;//粒子路线中有route[j]这个城市
	}
	for (int k = 0; k < citycount; k++)
	{
		if (flag[k] == false)//粒子路线中没有route[k]这个城市,需要将这个城市加入到粒子路线中
		{
			int i = 0;
			for (; i < citycount; i++)
			{
				if (biaoji[i] != 1)break;
			}
			p.x[i] = route[k];//对于标记为0的进行替换
			biaoji[i] = 1;
		}
	}
}

5、全局变量

const int citycount = 29;
double vmax = 1, vmin = -1;
std::default_random_engine random(time(NULL));
static std::uniform_real_distribution<double> distribution(0.0, std::nextafter(1.0, DBL_MAX));// C++11提供的实数均匀分布模板类
static std::uniform_real_distribution<double> distribution1(vmin, std::nextafter(vmax, DBL_MAX));
Graph Map_City;//定义全局对象图,放在Graph类后
PSO pso;//定义粒子群优化算法类的对象,放在PSO类后

6、主函数

main.()函数

int main()
{
	system("mode con cols=200");//改变宽高
	system("color fc");//改变颜色
	std::cout << "粒子群优化算法求解TSP旅行商问题" << endl;
	pso.PSO_TSP(30,500,2,2,0.8,3.0, "E:\\计算智能代码\\PSO_TSP\\PSO_TSP\\bayg29.tsp");
	system("pause");
	return 0;
}

7、运行结果

7.1 控制台运行结果:

粒子群优化算法求解TSP旅行商问题C++(2020.11.12)_第1张图片

7.2 生成的result.txt文件结果:

粒子群优化算法求解TSP旅行商问题C++(2020.11.12)_第2张图片
粒子群优化算法求解TSP旅行商问题C++(2020.11.12)_第3张图片

8 Matlab绘制最优路径结果

8.1 Matlab导入数据

粒子群优化算法求解TSP旅行商问题C++(2020.11.12)_第4张图片

8.2 编写tspplot.m脚本文件

index=[21,12,6,9,3,5,1,2,4,10,13,8,16,7,11,19,15,14,18,17,22,20,25,23,27,24,28,26,29];
index=index';
myindex=sort(index);
X=x;
Y=y;
for i=1:29
      X(i)=x(index(i))
      Y(i)=y(index(i))
end
figure;
subplot(121);
scatter(x,y,'r.');
for i=1:29
tx=num2str(i);
text(x(i)+1,y(i)+1,tx);
end
subplot(122);
plot(X,Y,'-');
for i=1:29
tx=num2str(index(i));
text(X(i)+1,Y(i)+1,tx);
end

8.3 脚本运行结果

粒子群优化算法求解TSP旅行商问题C++(2020.11.12)_第5张图片

附录(完整代码)

#include 
#include 
#include 
#include 
#include 
using namespace std;
const int citycount = 29;
double vmax = 1, vmin = -1;
std::default_random_engine random(time(NULL));
static std::uniform_real_distribution<double> distribution(0.0, std::nextafter(1.0, DBL_MAX));// C++11提供的实数均匀分布模板类
static std::uniform_real_distribution<double> distribution1(vmin, std::nextafter(vmax, DBL_MAX));
class City
{
public:
	string name;//城市名称
	double x, y;//城市点的二维坐标
	void shuchu()
	{
		std::cout << name + ":" << "(" << x << "," << y << ")" << endl;
	}
};
class Graph
{
public:
	City city[citycount];//城市数组
	double distance[citycount][citycount];//城市间的距离矩阵
	void Readcoordinatetxt(string txtfilename)//读取城市坐标文件的函数
	{
		ifstream myfile(txtfilename, ios::in);
		double x = 0, y = 0;
		int z = 0;
		if (!myfile.fail())
		{
			int i = 0;
			while (!myfile.eof() && (myfile >> z >> x >> y))
			{
				city[i].name = to_string(_Longlong(z));//城市名称转化为字符串
				city[i].x = x; city[i].y = y;
				i++;
			}
		}
		else
			cout << "文件不存在";
		myfile.close();//计算城市距离矩阵
		for (int i = 0; i < citycount; i++)
			for (int j = 0; j < citycount; j++)
			{
				distance[i][j] = sqrt((pow((city[i].x - city[j].x), 2) + pow((city[i].y - city[j].y), 2)) / 10.0);//计算城市ij之间的伪欧式距离
				if (round(distance[i][j] < distance[i][j]))distance[i][j] = round(distance[i][j]) + 1;
				else distance[i][j] = round(distance[i][j]);
			}
	}
	void shuchu()
	{
		cout << "城市名称 " << "坐标x" << " " << "坐标y" << endl;
		for (int i = 0; i < citycount; i++)
			city[i].shuchu();
		cout << "距离矩阵: " << endl;
		for (int i = 0; i < citycount; i++)
		{
			for (int j = 0; j < citycount; j++)
			{
				if (j == citycount - 1)
					std::cout << distance[i][j] << endl;
				else
					std::cout << distance[i][j] << "  ";
			}
		}
	}
};
Graph Map_City;//定义全局对象图,放在Graph类后
int * Random_N(int n)
{
	int *geti;
	geti = new int[n];
	int j = 0;
	while (j<n)
	{
		while (true)
		{
			int flag = -1;
			int temp = rand() % n + 1;
			if (j > 0)
			{
				int k = 0;
				for (; k < j; k++)
				{
					if (temp == *(geti + k))break;
				}
				if (k == j)
				{
					*(geti + j) = temp;
					flag = 1;
				}
			}
			else
			{
				*(geti + j) = temp;
				flag = 1;
			}
			if (flag == 1)break;
		}
		j++;
	}
	return geti;
}
double Evaluate(int *x)//计算粒子适应值的函数
{
	double fitnessvalue = 0;
	for (int i = 0; i < citycount - 1; i++)
		fitnessvalue += Map_City.distance[x[i] - 1][x[i + 1] - 1];
	fitnessvalue += Map_City.distance[x[citycount - 1] - 1][x[0] - 1];
	return fitnessvalue;
}
class Particle
{
	public:
		int *x;//粒子的位置
		int *v;//粒子的速度
		double fitness;
		void Init()
		{
			x = new int[citycount];
			v = new int[citycount];
			int *M = Random_N(citycount);
			for (int i = 0; i < citycount; i++)
				x[i] = *(M + i);
			fitness = Evaluate(x);
			for (int i = 0; i < citycount; i++)
			{
				v[i] = (int)distribution1(random);
			}
		}
		void shuchu()
		{
			for (int i = 0; i < citycount; i++)
			{
				if (i == citycount - 1)
					std::cout << x[i] <<") = "<<fitness<< endl;
				else if(i==0)
					std::cout <<"f("<< x[i] << ",";
				else
					std::cout << x[i] << ",";
			}
		}
};
void Adjuxt_validParticle(Particle p)//调整粒子有效性的函数,使得粒子的位置符合TSP问题解的一个排列
{
	int route[citycount];//1-citycount
	bool flag[citycount];//对应route数组中是否在粒子的位置中存在的数组,参考数组为route
	int biaoji[citycount];//对粒子每个元素进行标记的数组,参考数组为粒子位置x
	for (int j = 0; j < citycount; j++)
	{
		route[j] = j + 1;
		flag[j] = false;
		biaoji[j] = 0;
	}
	//首先判断粒子p的位置中是否有某个城市且唯一,若有且唯一,则对应flag的值为true,
	for (int j = 0; j < citycount; j++)
	{
		int num = 0;
		for (int k = 0; k < citycount; k++)
		{
			if (p.x[k] == route[j])
			{
				biaoji[k] = 1;//说明粒子中的k号元素对应的城市在route中,并且是第一次出现才进行标记
				num++; break;
			}
		}
		if (num == 0) flag[j] = false;//粒子路线中没有route[j]这个城市
		else if (num == 1) flag[j] = true;//粒子路线中有route[j]这个城市
	}
	for (int k = 0; k < citycount; k++)
	{
		if (flag[k] == false)//粒子路线中没有route[k]这个城市,需要将这个城市加入到粒子路线中
		{
			int i = 0;
			for (; i < citycount; i++)
			{
				if (biaoji[i] != 1)break;
			}
			p.x[i] = route[k];//对于标记为0的进行替换
			biaoji[i] = 1;
		}
	}
}
class PSO
{
	public:
		Particle *oldparticle;
		Particle *pbest, gbest;
		double c1, c2,w;
		int Itetime;
		int popsize;

		void Init(int Pop_Size,int itetime,double C1,double C2,double W)
		{
			Itetime = itetime;
			c1 = C1;
			c2 = C2;
			w = W;
			popsize = Pop_Size;
			oldparticle = new Particle[popsize];
			pbest = new Particle[popsize];
			for (int i = 0; i < popsize; i++)
			{
				oldparticle[i].Init();
				pbest[i].Init();
				for (int j = 0; j < citycount; j++)
				{
					pbest[i].x[j] = oldparticle[i].x[j];
					pbest[i].fitness = oldparticle[i].fitness;
				}
			}
			gbest.Init(); gbest.fitness = INFINITY;//为全局最优粒子初始化
			for (int i = 0; i < popsize; i++)
			{
				if (pbest[i].fitness < gbest.fitness)
				{
					gbest.fitness = pbest[i].fitness;
					for (int j = 0; j < citycount; j++)
						gbest.x[j] = pbest[i].x[j];
				}
			}
		}
		void Shuchu()
		{
			for (int i = 0; i < popsize; i++)
			{
				std::cout << "粒子" << i + 1<<"->";
				oldparticle[i].shuchu();
			}
		}
		void PSO_TSP(int Pop_size,int itetime, double C1, double C2, double W,double Vlimitabs,string filename)
		{
			Map_City.Readcoordinatetxt(filename);
			Map_City.shuchu();
			vmax = Vlimitabs; vmin = -Vlimitabs;
			Init(Pop_size,itetime,C1,C2,W);
			std::cout << "初始化后的种群如下:" << endl;
			Shuchu();
			ofstream outfile;
			outfile.open("result.txt", ios::trunc);
			outfile << "城市名称 " << "坐标x" << " " << "坐标y" << endl;
			for (int i = 0; i < citycount; i++)
				outfile << Map_City.city[i].name << " " << Map_City.city[i].x << " " << Map_City.city[i].y << endl;
			outfile << "距离矩阵: " << endl;
			for (int i = 0; i < citycount; i++)
			{
				for (int j = 0; j < citycount; j++)
				{
					if (j == citycount - 1)
						outfile << Map_City.distance[i][j] << endl;
					else
						outfile << Map_City.distance[i][j] << "  ";
				}
			}
			outfile << "初始化后的种群如下:" << endl;
			for (int i = 0; i < popsize; i++)
			{
				outfile << "粒子" << i + 1 << "->";
				for (int j = 0; j < citycount; j++)
				{
					if (j == citycount - 1)
						outfile << oldparticle[i].x[j] << ") = " << oldparticle[i].fitness << endl;
					else if (j == 0)
						outfile << "f(" << oldparticle[i].x[j] << ",";
					else
						outfile << oldparticle[i].x[j] << ",";
				}
			}
			for (int ite = 0; ite < Itetime; ite++)
			{
				for (int i = 0; i < popsize; i++)
				{
					//更新粒子速度和位置
					for (int j = 0; j < citycount; j++)
					{
						oldparticle[i].v[j] = (int)(w*oldparticle[i].v[j] + c1*distribution(random)*(pbest[i].x[j] - oldparticle[i].x[j]) + c2*distribution(random)*(gbest.x[j] - oldparticle[i].x[j]));
						if (oldparticle[i].v[j] > vmax)//粒子速度越界调整
							oldparticle[i].v[j] = (int)vmax;
						else if (oldparticle[i].v[j] < vmin)
							oldparticle[i].v[j] = (int)vmin;
						oldparticle[i].x[j] += oldparticle[i].v[j];
						if (oldparticle[i].x[j] > citycount)oldparticle[i].x[j] = citycount;//粒子位置越界调整
						else if (oldparticle[i].x[j] < 1) oldparticle[i].x[j] = 1;
					}
					//粒子位置有效性调整,必须满足解空间的条件
					Adjuxt_validParticle(oldparticle[i]);
					oldparticle[i].fitness = Evaluate(oldparticle[i].x);
					pbest[i].fitness = Evaluate(pbest[i].x);
					if (oldparticle[i].fitness < pbest[i].fitness)
					{
						for (int j = 0; j < citycount; j++)
							pbest[i].x[j] = oldparticle[i].x[j];
					}//更新单个粒子的历史极值
					for (int j = 0; j < citycount; j++)
						gbest.x[j] = pbest[i].x[j];//更新全局极值
					for (int k = 0; k < popsize && k!=i; k++)
					{
						if (Evaluate(pbest[k].x) < Evaluate(gbest.x))
						{
							for (int j = 0; j < citycount; j++)
								gbest.x[j] = pbest[k].x[j];
							gbest.fitness = Evaluate(gbest.x);
						}
					}
				}
				outfile << "第"<<ite+1<<"次迭代后的种群如下:" << endl;
				for (int i = 0; i < popsize; i++)
				{
					outfile << "粒子" << i + 1 << "->";
					for (int j = 0; j < citycount; j++)
					{
						if (j == citycount - 1)
							outfile << oldparticle[i].x[j] << ") = " << oldparticle[i].fitness << endl;
						else if (j == 0)
							outfile << "f(" << oldparticle[i].x[j] << ",";
						else
							outfile << oldparticle[i].x[j] << ",";
					}
				}
				std::cout << "第" <<ite+1<< "次迭代后的最好粒子:";
				outfile << "第" << ite + 1 << "次迭代后的最好粒子:"<<endl;
				for (int j = 0; j < citycount; j++)
				{
					if (j == citycount - 1)
						outfile << gbest.x[j] << ") = " << gbest.fitness << endl;
					else if (j == 0)
						outfile << "f(" << gbest.x[j] << ",";
					else
						outfile << gbest.x[j] << ",";
				}
				gbest.shuchu();
			}
			outfile.close();
		}
};
PSO pso;
int main()
{
	system("mode con cols=200");//改变宽高
	system("color fc");//改变颜色
	std::cout << "粒子群优化算法求解TSP旅行商问题" << endl;
	pso.PSO_TSP(30,500,2,2,0.8,3.0, "E:\\计算智能代码\\PSO_TSP\\PSO_TSP\\bayg29.tsp");
	system("pause");
	return 0;
}

你可能感兴趣的:(C++,实践经验,pso,c++,tsp,算法,数据结构)