昨天给自己挖了一个坑0.0 昨天在验证ARP发送程序时,当时为了看到PC 的arp记录被改变,专门给写了个错误的mac 00:11:22:33:44:55,结果今调试ICMP时,老是收不到包。。自作孽啊
还是简单介绍下ICMP协议报文格式
ICMP是TCP/IP协议族的一个子协议,用于在IP主机、路由器之间传递控制消息。控制消息是指网络通不通、主机是否可达、路由是否可用等网络本身的消息。
ICMP协议通过IP协议发送的,IP协议是一种无连接的,不可靠的数据包协议,属于网络层协议。
ICMP报文是在IP数据报内被传输的。在实际传输中的数据包结构:20字节IP首部 + 8字节ICMP首部+ 1472字节<数据大小>38字节。
ICMP报文格式:IP首部(20字节)+8位类型+8位代码+16位校验和+(不同的类型和代码,格式也有所不同)。下面即为ICMP报文格式:
上代码,也是在之前的代码的基础上增加,感觉多实现几个协议后就不想加注释了。。。
#include
#include
#include
#include
#include
#define DEBUG_LEVEL 0
#define NUM_MBUFS (4096-1)
#define BURST_SIZE 32
#define ENABLE_SEND 1
#define ENABLE_ARP 1
#define ENABLE_ICMP 1
int gDpdkPortId = 0;//eth0
#if ENABLE_SEND
#define MAKE_IPV4_ADDR(a, b, c, d) (a + (b<<8) + (c<<16) + (d<<24))
static uint32_t gLocalIp = MAKE_IPV4_ADDR(192, 168, 101, 83);
static uint32_t gSrcIp;
static uint32_t gDstIp;
static uint16_t gSrcPort;
static uint16_t gDstPort;
static uint8_t gSrcMac[RTE_ETHER_ADDR_LEN];
static uint8_t gDstMac[RTE_ETHER_ADDR_LEN];
#endif
static const struct rte_eth_conf port_conf_default = {
.rxmode = {.max_rx_pkt_len = RTE_ETHER_MAX_LEN} //RTE_ETHER_MAX_LEN 以太网数据中长度,一般为1518
};
static void ng_init_port(struct rte_mempool *mbuf_pool)
{
//查询系统中可用的以太网设备数量,比如eth0,eth1等
uint16_t nb_sys_ports = rte_eth_dev_count_avail();
if(nb_sys_ports == 0)
{
rte_exit(EXIT_FAILURE,"no eth dev is availble\n");
}
struct rte_eth_dev_info dev_info;
//查询以太网接口属性,此处的id = 0,代表查询eth0
rte_eth_dev_info_get(gDpdkPortId,&dev_info);
const int num_rx_queues = 1;//设置接受队列大小,通常每个队列与一个独立CPU关联
const int num_tx_queues = 1;
struct rte_eth_conf port_conf = port_conf_default;
//配置eth0相关属性,用于后面接收发送数据包
rte_eth_dev_configure(gDpdkPortId,num_rx_queues,num_tx_queues,&port_conf);
//用于配置以太网设备的接收队列
if(rte_eth_rx_queue_setup(gDpdkPortId,0,1024,rte_eth_dev_socket_id(gDpdkPortId),NULL,mbuf_pool) < 0)
{
rte_exit(EXIT_FAILURE,"could not setup RX queue\n");
}
#if ENABLE_SEND
struct rte_eth_txconf txq_conf = dev_info.default_txconf;
txq_conf.offloads = port_conf.rxmode.offloads;
//用于配置以太网设备的发送队列
if(rte_eth_tx_queue_setup(gDpdkPortId,0,1024,rte_eth_dev_socket_id(gDpdkPortId),&txq_conf) < 0)
{
rte_exit(EXIT_FAILURE,"can not setup TX queue\n");
}
#endif
//启动指定的网卡,使其能够接收和发送数据包
//初始化指定的以太网设备,配置接收队列和设备属性,并启动该网卡,以便进行数据包的收发和处理操作
if(rte_eth_dev_start(gDpdkPortId) < 0)
{
rte_exit(EXIT_FAILURE,"can not start\n");
}
}
static int ng_encode_udp_pkt(uint8_t *msg,uint8_t *data,uint16_t total_len)
{
//构造以太网头部(Ethernet Header),并将源MAC地址、目的MAC地址以及以太网类型(Ethernet Type)进行填充
struct rte_ether_hdr *eth = (struct rte_ether_hdr *)msg;
rte_memcpy(eth->s_addr.addr_bytes,gSrcMac,RTE_ETHER_ADDR_LEN);
rte_memcpy(eth->d_addr.addr_bytes, gDstMac, RTE_ETHER_ADDR_LEN);
eth->ether_type = htons(RTE_ETHER_TYPE_IPV4);
//构造IPv4头部(IPv4 Header)
struct rte_ipv4_hdr *ip = (struct rte_ipv4_hdr *)(msg +sizeof(struct rte_ether_hdr));
ip->version_ihl = 0x45;
ip->type_of_service = 0;
ip->total_length = htons(total_len- sizeof(struct rte_ether_hdr));
ip->packet_id = 0;
ip->fragment_offset = 0;//fragment_offset 被设置为0,表示数据包不进行分片。
ip->time_to_live = 64; //ttl = 64
ip->next_proto_id = IPPROTO_UDP;
ip->src_addr = gSrcIp;
ip->dst_addr = gDstIp;
ip->hdr_checksum = 0;
ip->hdr_checksum = rte_ipv4_cksum(ip);
//构造UDP头部(UDP Header)
struct rte_udp_hdr *udp = (struct rte_udp_hdr *)(msg +sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr));
udp->src_port = gSrcPort;
udp->dst_port = gDstPort;
uint16_t udplen = total_len - sizeof(struct rte_ether_hdr) - sizeof(struct rte_ipv4_hdr);
udp->dgram_len = htons(udplen);
const char *source_str = "send day 2 by zxk";
strcpy((char *)data, source_str);
rte_memcpy((uint8_t *)(udp+1),data,udplen);
udp->dgram_cksum = 0;
udp->dgram_cksum = rte_ipv4_udptcp_cksum(ip,udp);
struct in_addr addr;
addr.s_addr = gSrcIp;
printf(" zxk_send--> src: %s:%d, ", inet_ntoa(addr), ntohs(gSrcPort));
addr.s_addr = gDstIp;
printf("zxk_send dst: %s:%d\n", inet_ntoa(addr), ntohs(gDstPort));
return 0;
}
static struct rte_mbuf *ng_send_udp(struct rte_mempool *mbuf_pool,uint8_t *data,uint16_t length)
{
// 42是以太网头部(14字节)+ IPv4头部(20字节)+ UDP头部(8字节)
const unsigned total_len = length + 42;
// 使用rte_pktmbuf_alloc函数从指定的内存池中分配一个rte_mbuf结构
struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mbuf_pool);
if(!mbuf)
{
rte_exit(EXIT_FAILURE,"rte_pktmbuf_alloc fail\n");
}
// 设置rte_mbuf的数据包长度和实际数据长度
mbuf->pkt_len = total_len;
mbuf->data_len = total_len;
// 获取rte_mbuf的数据指针
uint8_t * pktdata = rte_pktmbuf_mtod(mbuf,uint8_t *);
// 使用ng_encode_udp_pkt函数对rte_mbuf进行填充
ng_encode_udp_pkt(pktdata,data,total_len);
return mbuf;
}
#if ENABLE_ARP
/*
这段代码是一个函数 ng_encode_arp_pkt,用于构造 ARP 数据包的头部和数据部分。
msg: 指向数据包缓冲区的指针,用于存储构造的 ARP 数据包。
dst_mac: 目标主机的 MAC 地址,用于填充 ARP 数据包的目标 MAC 地址字段。
sip: 源 IP 地址,用于填充 ARP 数据包的源 IP 地址字段。
dip: 目标 IP 地址,用于填充 ARP 数据包的目标 IP 地址字段。
*/
static int ng_encode_arp_pkt(uint8_t *msg,uint8_t *dst_mac,uint32_t sip,uint32_t dip)
{
//构造以太网头部(Ethernet Header),并将源MAC地址、目的MAC地址以及以太网类型(Ethernet Type)进行填充
struct rte_ether_hdr * eth = (struct rte_ether_hdr *)msg;
rte_memcpy(eth->s_addr.addr_bytes,gSrcMac,RTE_ETHER_ADDR_LEN);
rte_memcpy(eth->d_addr.addr_bytes,dst_mac,RTE_ETHER_ADDR_LEN);
eth->ether_type = htons(RTE_ETHER_TYPE_ARP);
//构造 ARP(Address Resolution Protocol)数据包的头部
struct rte_arp_hdr *arp = (struct rte_arp_hdr *)(eth+1);
arp->arp_hardware = htons(1);//1:以太网
arp->arp_protocol = htons(RTE_ETHER_TYPE_IPV4);
arp->arp_hlen = RTE_ETHER_ADDR_LEN;//设置 ARP 数据包的硬件地址长度字段。在以太网中,MAC 地址长度为 6 字节
arp->arp_plen = sizeof(uint32_t);//设置 ARP 数据包的协议地址长度字段。在 IPv4 中,IP 地址长度为 4 字节
arp->arp_opcode = htons(2); //设置 ARP 数据包的操作码字段。这里的值 2 表示 ARP Reply(响应)
#if DEBUG_LEVEL
const char* mac_address = "00:11:22:33:44:55";
sscanf(mac_address, "%2hhx:%2hhx:%2hhx:%2hhx:%2hhx:%2hhx",
&gSrcMac[0], &gSrcMac[1], &gSrcMac[2], &gSrcMac[3], &gSrcMac[4], &gSrcMac[5]);
rte_memcpy(arp->arp_data.arp_sha.addr_bytes,gSrcMac,RTE_ETHER_ADDR_LEN);
#else
rte_memcpy(arp->arp_data.arp_sha.addr_bytes,gSrcMac,RTE_ETHER_ADDR_LEN);
#endif
rte_memcpy(arp->arp_data.arp_tha.addr_bytes,dst_mac,RTE_ETHER_ADDR_LEN);
arp->arp_data.arp_sip = sip;
arp->arp_data.arp_tip = dip;
return 0;
}
static struct rte_mbuf *ng_send_arp(struct rte_mempool *mbuf_pool,uint8_t *dst_mac, uint32_t sip, uint32_t dip)
{
const unsigned total_length = sizeof(struct rte_ether_hdr) + sizeof(struct rte_arp_hdr);
struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mbuf_pool);
if(!mbuf)
{
rte_exit(EXIT_FAILURE,"rte_pktmbuf_alloc fail\n");
}
mbuf->pkt_len = total_length;
mbuf->data_len = total_length;
uint8_t *pkt_data = rte_pktmbuf_mtod(mbuf,uint8_t*);
ng_encode_arp_pkt(pkt_data,dst_mac,sip,dip);
return mbuf;
}
#endif
#if ENABLE_ICMP
static uint16_t ng_checksum(uint16_t *addr, int count)
{
register long sum = 0;
while(count > 1)
{
sum += *(unsigned short *)addr++;
count -= 2;
}
if(count > 0)
{
sum += *(unsigned char *)addr;
}
while(sum >> 16)
{
sum = (sum & 0xffff) + (sum >> 16);
}
return ~sum;
}
static int ng_encode_icmp_pkt(uint8_t *msg,uint8_t *dst_mac,
uint32_t sip,uint32_t dip,uint16_t id,uint16_t seqnb)
{
//1 ether header
struct rte_ether_hdr *eth = (struct rte_ether_hdr *)msg;
rte_memcpy(eth->s_addr.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
rte_memcpy(eth->d_addr.addr_bytes,dst_mac,RTE_ETHER_ADDR_LEN);
eth->ether_type = htons(RTE_ETHER_TYPE_IPV4);
//2 IP header
struct rte_ipv4_hdr *ip = (struct rte_ipv4_hdr *)(msg +sizeof(struct rte_ether_hdr));
ip->version_ihl = 0x45;
ip->type_of_service = 0;
ip->total_length = htons(sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_icmp_hdr));
ip->packet_id = 0;
ip->fragment_offset = 0;
ip->time_to_live = 64;
ip->next_proto_id = IPPROTO_ICMP;
ip->src_addr = sip;
ip->dst_addr = dip;
ip->hdr_checksum = 0;
ip->hdr_checksum = rte_ipv4_cksum(ip);
//ICMP header
struct rte_icmp_hdr * icmp = (struct rte_icmp_hdr* )(msg + sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr));
icmp->icmp_type = RTE_IP_ICMP_ECHO_REPLY;
icmp->icmp_code = 0;
icmp->icmp_ident = id;
icmp->icmp_seq_nb = seqnb;
icmp->icmp_cksum = 0;
icmp->icmp_cksum = ng_checksum((uint16_t *)icmp, sizeof(struct rte_icmp_hdr));
return 0;
}
static struct rte_mbuf *ng_send_icmp(struct rte_mempool *mbuf_pool,uint8_t *dst_mac,
uint32_t sip, uint32_t dip, uint16_t id, uint16_t seqnb)
{
const unsigned total_length = sizeof(struct rte_ether_hdr) +sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_icmp_hdr);
struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mbuf_pool);
if (!mbuf)
{
rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc fail\n");
}
mbuf->pkt_len = total_length;
mbuf->data_len = total_length;
uint8_t * pkt_data = rte_pktmbuf_mtod(mbuf, uint8_t *);
ng_encode_icmp_pkt(pkt_data,dst_mac,sip,dip,id,seqnb);
return mbuf;
}
#endif
int main(int argc,char *argv[])
{
//初始化EAL环境
if(rte_eal_init(argc,argv) < 0 )
{
rte_exit(EXIT_FAILURE,"Error with EAL init\n");
}
//创建内存池
struct rte_mempool *mbuf_pool = rte_pktmbuf_pool_create("mbuf pool",NUM_MBUFS,0,0,RTE_MBUF_DEFAULT_BUF_SIZE,rte_socket_id());
if(mbuf_pool == NULL)
{
rte_exit(EXIT_FAILURE,"Could not create mbuf pool\n");
}
//mbuf_pool 是一个预先创建好的内存池,它将被用于接收队列来存储数据包的缓冲区
ng_init_port(mbuf_pool);
rte_eth_macaddr_get(gDpdkPortId, (struct rte_ether_addr *)gSrcMac);
while(1)
{
struct rte_mbuf *mbufs[BURST_SIZE];
//mbufs用于存储数据包的缓冲区结构体
//BURST_SIZE表示每次从网卡接收数据包的最大数量
unsigned num_recvd = rte_eth_rx_burst(gDpdkPortId,0,mbufs,BURST_SIZE);
if(num_recvd > BURST_SIZE)
{
rte_exit(EXIT_FAILURE,"Error receiving from eth\n");
}
unsigned i = 0;
for(i = 0;i < num_recvd;i++)
{
//rte_ether_hdr是DPDK 中用于表示以太网数据包头部的结构体
//rte_pktmbuf_mtod用于将数据包缓冲区中的数据指针转换为特定类型的指针,以方便对数据包头部进行解析
struct rte_ether_hdr *ehdr = rte_pktmbuf_mtod(mbufs[i],struct rte_ether_hdr *);
#if ENABLE_ARP
if(ehdr->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_ARP))
{
struct rte_arp_hdr *ahdr = rte_pktmbuf_mtod_offset(mbufs[i],
struct rte_arp_hdr *,sizeof(struct rte_ether_hdr));
struct in_addr addr;
addr.s_addr = ahdr->arp_data.arp_tip;
printf("zxk arp ---> src: %s ", inet_ntoa(addr));
addr.s_addr = gLocalIp;
printf("zxk local: %s \n", inet_ntoa(addr));
//只处理ip地址是本机的arp数据包
if(ahdr->arp_data.arp_tip == gLocalIp)
{
struct rte_mbuf *arpbuf = ng_send_arp(mbuf_pool,ahdr->arp_data.arp_sha.addr_bytes,
ahdr->arp_data.arp_tip,ahdr->arp_data.arp_sip);
rte_eth_tx_burst(gDpdkPortId,0,&arpbuf,1);
rte_pktmbuf_free(arpbuf);
rte_pktmbuf_free(mbufs[i]);
}
continue;
}
#endif
//rte_cpu_to_be_16用于将 16 位的数据从主机字节序(CPU 字节序)转换为网络字节序(大端字节序)
if(ehdr->ether_type != rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4))
{
continue;
}
//rte_pktmbuf_mtod_offset来获取数据包缓冲区中 IPv4 头部的指针
//将数据包偏移以太网数据包头部大小后,就是IPV4头部信息,再转换为struct rte_ipv4_hdr *
struct rte_ipv4_hdr * iphdr = rte_pktmbuf_mtod_offset(mbufs[i],struct rte_ipv4_hdr *,sizeof(struct rte_ether_hdr));
if(iphdr->next_proto_id == IPPROTO_UDP)
{
//(iphdr + 1) +1指的是偏移rte_ipv4_hdr(iphdr类型)大小
struct rte_udp_hdr *udphdr = (struct rte_udp_hdr *)(iphdr + 1);
#if ENABLE_SEND
rte_memcpy(gDstMac,ehdr->s_addr.addr_bytes,RTE_ETHER_ADDR_LEN);
rte_memcpy(&gSrcIp,&iphdr->dst_addr,sizeof(uint32_t));
rte_memcpy(&gDstIp,&iphdr->src_addr,sizeof(uint32_t));
rte_memcpy(&gSrcPort, &udphdr->dst_port, sizeof(uint16_t));
rte_memcpy(&gDstPort, &udphdr->src_port, sizeof(uint16_t));
#endif
uint16_t length = ntohs(udphdr->dgram_len);
*((char *)udphdr + length) = '\0';
struct in_addr addr;
addr.s_addr = iphdr->src_addr;
printf("src: %s:%d\n",inet_ntoa(addr),ntohs(udphdr->src_port));
addr.s_addr = iphdr->dst_addr;
printf("dst: %s:%d data:%s\n",inet_ntoa(addr),ntohs(udphdr->dst_port),(char *)(udphdr+1));
#if ENABLE_SEND
//ng_send构建好的数据包,udphdr + 1 表示数据包的有效负载
struct rte_mbuf * txbuf = ng_send_udp(mbuf_pool,(uint8_t *)(udphdr+1),length);
/*
第一个参数是要发送的以太网端口的 ID,这里是 gDpdkPortId。
第二个参数是发送队列的 ID,这里是 0,表示发送到队列 0。
第三个参数是一个指向 rte_mbuf 指针数组的指针,用于指定要发送的数据包。
最后一个参数是要发送的数据包的数量,这里是 1,因为只发送了一个数据包。
*/
rte_eth_tx_burst(gDpdkPortId,0,&txbuf,1);
rte_pktmbuf_free(txbuf);
#endif
rte_pktmbuf_free(mbufs[i]);
}
#if ENABLE_ICMP
if (iphdr->next_proto_id == IPPROTO_ICMP)
{
struct rte_icmp_hdr *icmphdr = (struct rte_icmp_hdr *)(iphdr + 1);
struct in_addr addr;
addr.s_addr = iphdr->src_addr;
printf("zxk_icmp ---> src: %s ", inet_ntoa(addr));
if (icmphdr->icmp_type == RTE_IP_ICMP_ECHO_REQUEST)
{
addr.s_addr = iphdr->dst_addr;
printf("zxk local: %s , type : %d\n", inet_ntoa(addr), icmphdr->icmp_type);
struct rte_mbuf *txbuf = ng_send_icmp(mbuf_pool, ehdr->s_addr.addr_bytes,
iphdr->dst_addr, iphdr->src_addr, icmphdr->icmp_ident, icmphdr->icmp_seq_nb);
rte_eth_tx_burst(gDpdkPortId, 0, &txbuf, 1);
rte_pktmbuf_free(txbuf);
rte_pktmbuf_free(mbufs[i]);
}
}
#endif
}
}
return 0;
}
OK ,ICMP reply实现完成!!明天再冲!