第四计 以逸待劳
指作战时不首先出击,养精蓄锐,以对付从远道来的疲劳的敌人。
困敌可用积极防御,逐渐消耗敌人的有生力量,使之由强变弱,而我因势利导又可使自己变被动为主动,不一定要用直接进攻的方法,同样可以制胜。
Tutorial: Integrating stimulated vs. control PBMC datasets to learn cell-type specific responses
Compiled: June 24, 2019
This tutorial walks through an alignment of two groups of PBMCs from Kang et al, 2017. In this experiment, PBMCs were split into a stimulated and control group and the stimulated group was treated with interferon beta. The response to interferon caused cell type specific gene expression changes that makes a joint analysis of all the data difficult, with cells clustering both by stimulation condition and by cell type. Here, we demonstrate our integration strategy, as described in Stuart and Butler et al, 2018, for performing integrated analyses to promote the identification of common cell types and enable comparative analyses. While this example demonstrates the integration of two datasets (conditions), these methods have been extended to multiple datasets. This workflow provides an example of integrating four pancreatic islet datasets.
Integration goals
The following tutorial is designed to give you an overview of the kinds of comparative analyses on complex cell types that are possible using the Seurat integration procedure. Here, we address three main goals:
- Identify cell types that are present in both datasets
- Obtain cell type markers that are conserved in both control and stimulated cells
- Compare the datasets to find cell-type specific responses to stimulation
Setup the Seurat objects
The gene expression matrices can be found here. We first read in the two count matrices and set up the Seurat objects.
library(Seurat)
library(cowplot)
ctrl.data <- read.table(file = "../data/immune_control_expression_matrix.txt.gz", sep = "\t")
stim.data <- read.table(file = "../data/immune_stimulated_expression_matrix.txt.gz", sep = "\t")
# Set up control object
ctrl <- CreateSeuratObject(counts = ctrl.data, project = "IMMUNE_CTRL", min.cells = 5)
ctrl$stim <- "CTRL"
ctrl <- subset(ctrl, subset = nFeature_RNA > 500)
ctrl <- NormalizeData(ctrl, verbose = FALSE)
ctrl <- FindVariableFeatures(ctrl, selection.method = "vst", nfeatures = 2000)
# Set up stimulated object
stim <- CreateSeuratObject(counts = stim.data, project = "IMMUNE_STIM", min.cells = 5)
stim$stim <- "STIM"
stim <- subset(stim, subset = nFeature_RNA > 500)
stim <- NormalizeData(stim, verbose = FALSE)
stim <- FindVariableFeatures(stim, selection.method = "vst", nfeatures = 2000)
Perform integration
We then identify anchors using the FindIntegrationAnchors
function, which takes a list of Seurat objects as input, and use these anchors to integrate the two datasets together with IntegrateData
.
immune.anchors <- FindIntegrationAnchors(object.list = list(ctrl, stim), dims = 1:20)
immune.combined <- IntegrateData(anchorset = immune.anchors, dims = 1:20)
Perform an integrated analysis
Now we can run a single integrated analysis on all cells!
DefaultAssay(immune.combined) <- "integrated"
# Run the standard workflow for visualization and clustering
immune.combined <- ScaleData(immune.combined, verbose = FALSE)
immune.combined <- RunPCA(immune.combined, npcs = 30, verbose = FALSE)
# t-SNE and Clustering
immune.combined <- RunUMAP(immune.combined, reduction = "pca", dims = 1:20)
immune.combined <- FindNeighbors(immune.combined, reduction = "pca", dims = 1:20)
immune.combined <- FindClusters(immune.combined, resolution = 0.5)
# Visualization
p1 <- DimPlot(immune.combined, reduction = "umap", group.by = "stim")
p2 <- DimPlot(immune.combined, reduction = "umap", label = TRUE)
plot_grid(p1, p2)
To visualize the two conditions side-by-side, we can use the split.by
argument to show each condition colored by cluster.
DimPlot(immune.combined, reduction = "umap", split.by = "stim")
Identify conserved cell type markers
To identify canonical cell type marker genes that are conserved across conditions, we provide the FindConservedMarkers
function. This function performs differential gene expression testing for each dataset/group and combines the p-values using meta-analysis methods from the MetaDE R package. For example, we can calculated the genes that are conserved markers irrespective of stimulation condition in cluster 7 (NK cells).
DefaultAssay(immune.combined) <- "RNA"
nk.markers <- FindConservedMarkers(immune.combined, ident.1 = 7, grouping.var = "stim", verbose = FALSE)
head(nk.markers)
## CTRL_p_val CTRL_avg_logFC CTRL_pct.1 CTRL_pct.2 CTRL_p_val_adj
## GNLY 0 4.186117 0.943 0.046 0
## NKG7 0 3.164712 0.953 0.085 0
## GZMB 0 2.915692 0.839 0.044 0
## CLIC3 0 2.407695 0.601 0.024 0
## FGFBP2 0 2.241968 0.500 0.021 0
## CTSW 0 2.088278 0.537 0.030 0
## STIM_p_val STIM_avg_logFC STIM_pct.1 STIM_pct.2 STIM_p_val_adj
## GNLY 0.000000e+00 4.033650 0.955 0.061 0.000000e+00
## NKG7 0.000000e+00 2.914724 0.952 0.082 0.000000e+00
## GZMB 0.000000e+00 3.142391 0.898 0.061 0.000000e+00
## CLIC3 0.000000e+00 2.470769 0.629 0.031 0.000000e+00
## FGFBP2 9.524349e-156 1.483922 0.259 0.016 1.338457e-151
## CTSW 0.000000e+00 2.196390 0.604 0.035 0.000000e+00
## max_pval minimump_p_val
## GNLY 0.000000e+00 0
## NKG7 0.000000e+00 0
## GZMB 0.000000e+00 0
## CLIC3 0.000000e+00 0
## FGFBP2 9.524349e-156 0
## CTSW 0.000000e+00 0
We can explore these marker genes for each cluster and use them to annotate our clusters as specific cell types.
FeaturePlot(immune.combined, features = c("CD3D", "SELL", "CREM", "CD8A", "GNLY", "CD79A", "FCGR3A",
"CCL2", "PPBP"), min.cutoff = "q9")
immune.combined <- RenameIdents(immune.combined, `0` = "CD14 Mono", `1` = "CD4 Naive T", `2` = "CD4 Memory T",
`3` = "CD16 Mono", `4` = "B", `5` = "CD8 T", `6` = "T activated", `7` = "NK", `8` = "DC", `9` = "B Activated",
`10` = "Mk", `11` = "pDC", `12` = "Eryth", `13` = "Mono/Mk Doublets")
DimPlot(immune.combined, label = TRUE)
The DotPlot
function with the split.by
parameter can be useful for viewing conserved cell type markers across conditions, showing both the expression level and the percentage of cells in a cluster expressing any given gene. Here we plot 2-3 strong marker genes for each of our 13 clusters.
Idents(immune.combined) <- factor(Idents(immune.combined), levels = c("Mono/Mk Doublets", "pDC",
"Eryth", "Mk", "DC", "CD14 Mono", "CD16 Mono", "B Activated", "B", "CD8 T", "NK", "T activated",
"CD4 Naive T", "CD4 Memory T"))
markers.to.plot <- c("CD3D", "CREM", "HSPH1", "SELL", "GIMAP5", "CACYBP", "GNLY", "NKG7", "CCL5",
"CD8A", "MS4A1", "CD79A", "MIR155HG", "NME1", "FCGR3A", "VMO1", "CCL2", "S100A9", "HLA-DQA1",
"GPR183", "PPBP", "GNG11", "HBA2", "HBB", "TSPAN13", "IL3RA", "IGJ")
DotPlot(immune.combined, features = rev(markers.to.plot), cols = c("blue", "red"), dot.scale = 8,
split.by = "stim") + RotatedAxis()
Identify differential expressed genes across conditions
Now that we’ve aligned the stimulated and control cells, we can start to do comparative analyses and look at the differences induced by stimulation. One way to look broadly at these changes is to plot the average expression of both the stimulated and control cells and look for genes that are visual outliers on a scatter plot. Here, we take the average expression of both the stimulated and control naive T cells and CD14 monocyte populations and generate the scatter plots, highlighting genes that exhibit dramatic responses to interferon stimulation.
t.cells <- subset(immune.combined, idents = "CD4 Naive T")
Idents(t.cells) <- "stim"
avg.t.cells <- log1p(AverageExpression(t.cells, verbose = FALSE)$RNA)
avg.t.cells$gene <- rownames(avg.t.cells)
cd14.mono <- subset(immune.combined, idents = "CD14 Mono")
Idents(cd14.mono) <- "stim"
avg.cd14.mono <- log1p(AverageExpression(cd14.mono, verbose = FALSE)$RNA)
avg.cd14.mono$gene <- rownames(avg.cd14.mono)
genes.to.label = c("ISG15", "LY6E", "IFI6", "ISG20", "MX1", "IFIT2", "IFIT1", "CXCL10", "CCL8")
p1 <- ggplot(avg.t.cells, aes(CTRL, STIM)) + geom_point() + ggtitle("CD4 Naive T Cells")
p1 <- LabelPoints(plot = p1, points = genes.to.label, repel = TRUE)
p2 <- ggplot(avg.cd14.mono, aes(CTRL, STIM)) + geom_point() + ggtitle("CD14 Monocytes")
p2 <- LabelPoints(plot = p2, points = genes.to.label, repel = TRUE)
plot_grid(p1, p2)
As you can see, many of the same genes are upregulated in both of these cell types and likely represent a conserved interferon response pathway.
Because we are confident in having identified common cell types across condition, we can ask what genes change in different conditions for cells of the same type. First, we create a column in the meta.data slot to hold both the cell type and stimulation information and switch the current ident to that column. Then we use FindMarkers
to find the genes that are different between stimulated and control B cells. Notice that many of the top genes that show up here are the same as the ones we plotted earlier as core interferon response genes. Additionally, genes like CXCL10 which we saw were specific to monocyte and B cell interferon response show up as highly significant in this list as well.
immune.combined$celltype.stim <- paste(Idents(immune.combined), immune.combined$stim, sep = "_")
immune.combined$celltype <- Idents(immune.combined)
Idents(immune.combined) <- "celltype.stim"
b.interferon.response <- FindMarkers(immune.combined, ident.1 = "B_STIM", ident.2 = "B_CTRL", verbose = FALSE)
head(b.interferon.response, n = 15)
## p_val avg_logFC pct.1 pct.2 p_val_adj
## ISG15 8.611499e-155 3.1934171 0.998 0.236 1.210174e-150
## IFIT3 1.319470e-150 3.1195144 0.965 0.053 1.854251e-146
## IFI6 4.716672e-148 2.9264004 0.964 0.078 6.628339e-144
## ISG20 1.061563e-145 2.0390802 1.000 0.664 1.491814e-141
## IFIT1 1.830963e-136 2.8706318 0.909 0.030 2.573053e-132
## MX1 1.775606e-120 2.2540787 0.909 0.118 2.495259e-116
## LY6E 2.824749e-116 2.1460522 0.896 0.153 3.969620e-112
## TNFSF10 4.227184e-109 2.6372382 0.785 0.020 5.940461e-105
## IFIT2 4.627440e-106 2.5102230 0.789 0.038 6.502941e-102
## B2M 1.344345e-94 0.4193618 1.000 1.000 1.889208e-90
## PLSCR1 5.170871e-94 1.9769476 0.794 0.113 7.266624e-90
## IRF7 1.451494e-92 1.7994058 0.838 0.190 2.039785e-88
## CXCL10 6.201621e-84 3.6906104 0.650 0.010 8.715138e-80
## UBE2L6 1.324818e-81 1.4879509 0.854 0.301 1.861767e-77
## PSMB9 1.098134e-76 1.1378896 0.940 0.571 1.543208e-72
Another useful way to visualize these changes in gene expression is with the split.by
option to the FeaturePlot
or VlnPlot
function. This will display FeaturePlots of the list of given genes, split by a grouping variable (stimulation condition here). Genes such as CD3D and GNLY are canonical cell type markers (for T cells and NK/CD8 T cells) that are virtually unaffected by interferon stimulation and display similar gene expression patterns in the control and stimulated group. IFI6 and ISG15, on the other hand, are core interferon response genes and are upregulated accordingly in all cell types. Finally, CD14 and CXCL10 are genes that show a cell type specific interferon response. CD14 expression decreases after stimulation in CD14 monocytes, which could lead to misclassification in a supervised analysis framework, underscoring the value of integrated analysis. CXCL10 shows a distinct upregulation in monocytes and B cells after interferon stimulation but not in other cell types.
FeaturePlot(immune.combined, features = c("CD3D", "GNLY", "IFI6"), split.by = "stim", max.cutoff = 3,
cols = c("grey", "red"))
plots <- VlnPlot(immune.combined, features = c("LYZ", "ISG15", "CXCL10"), split.by = "stim", group.by = "celltype",
pt.size = 0, combine = FALSE)
CombinePlots(plots = plots, ncol = 1)