辗转相除法求最大公约数,最小公倍数

辗转相除法求最大公约数,最小公倍数

一、用法:

用较大的数除以较小的数,再以除数和余数反复做除法运算,当余数为0时,取当前算式除数(被除数/除数=商)为最大公约数。

求30和18的最大公约数:

30/18=1余12

18/12=1余6

12/6=2余0

30和18的最大公约数为6

如果用小数除以大数,只是过程多了一步,结果没有差别,所以写代码时不用考虑两个数的大小

18/30=0余18

30/18=1余12

18/12=1余6

12/6=2余0

二、原理

a/b=q余r,除数b和余数r能被同一个数整除,那么被除数a也能被这个数整除。或者说,除数与余数的最大公约数,就是被除数与除数的最大公约数。即被除数与除数的最大公约数,就是除数与余数的最大公约数。

三、代码实现

#include 
 
int main()
{
	int m = 0;
	int n = 0;
	scanf("%d %d", &m, &n);	
	int r = m % n;
	while (r != 0)
	{
		m = n; // 以除数作为被除数
		n = r; // 以余数作为除数
        r = m % n;
	}
	printf("%d\n", n); // 最后的除数为最大公约数
	return 0;
}

由于被除数与除数的最大公约数,就是除数与余数的最大公约数,即gcd(a,b)=gcd(b, a%b),所以也可以设计一个递归算法计算最大公约数。

#include 
 
int gcd(int a, int b)
{
	if (b == 0)
		return a;
	else
		return gcd(b, a % b);
}
 
int main()
{
	int m = 0;
	int n = 0;
	scanf("%d %d", &m, &n);
	printf("%d\n", gcd(m, n));
	return 0;
}

四、最小公倍数

最小公倍数是根据最大公约数求得的,最小公倍数=两数乘积/最大公约数

你可能感兴趣的:(算法,算法,蓝桥杯,c语言,c++)