这些天在学习图像语义分割相关的知识,并简单写了篇概述。原本想先看几篇经典论文,如全卷积网络FCN,奈何英语水平有限,翻译起来实在费劲。想来不如先直接体验一下语义分割的效果,果然实践起来还挺有趣的。遂将过程记录如下。
from torchvision import models
from PIL import Image
import matplotlib.pyplot as plt
import torch
import torchvision.transforms as T
import numpy as np
# Define the helper function
def decode_segmap(image, nc=21):
label_colors = np.array([(0, 0, 0), # 0=background
# 1=aeroplane, 2=bicycle, 3=bird, 4=boat, 5=bottle
(128, 0, 0), (0, 128, 0), (128, 128, 0), (0, 0, 128), (128, 0, 128),
# 6=bus, 7=car, 8=cat, 9=chair, 10=cow
(0, 128, 128), (128, 128, 128), (64, 0, 0), (192, 0, 0), (64, 128, 0),
# 11=dining table, 12=dog, 13=horse, 14=motorbike, 15=person
(192, 128, 0), (64, 0, 128), (192, 0, 128), (64, 128, 128), (192, 128, 128),
# 16=potted plant, 17=sheep, 18=sofa, 19=train, 20=tv/monitor
(0, 64, 0), (128, 64, 0), (0, 192, 0), (128, 192, 0), (0, 64, 128)])
r = np.zeros_like(image).astype(np.uint8)
g = np.zeros_like(image).astype(np.uint8)
b = np.zeros_like(image).astype(np.uint8)
for l in range(0, nc):
idx = image == l
r[idx] = label_colors[l, 0]
g[idx] = label_colors[l, 1]
b[idx] = label_colors[l, 2]
rgb = np.stack([r, g, b], axis=2)
return rgb
def segment(net, path):
img = Image.open(path)
plt.imshow(img)
plt.axis('off')
plt.show()
# Comment the Resize and CenterCrop for better inference results
trf = T.Compose([T.Resize(256),
T.CenterCrop(224),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
inp = trf(img).unsqueeze(0)
out = net(inp)['out']
om = torch.argmax(out.squeeze(), dim=0).detach().cpu().numpy()
rgb = decode_segmap(om)
plt.imshow(rgb)
plt.axis('off')
plt.show()
fcn = models.segmentation.fcn_resnet101(pretrained=True).eval()
# dlb = models.segmentation.deeplabv3_resnet101(pretrained=True).eval()
girl = '../img/girl_dog.jpg'
segment(fcn, girl)
# segment(dlb, girl)
参考链接:https://learnopencv.com/pytorch-for-beginners-semantic-segmentation-using-torchvision/
代码整体理解相对比较简单,详细内容在参考链接中讲解得很清除,我也不必再做赘述。
可能图像分割的效果不是那么得好,但整体而言还是实现了语义分割,大家也可以自己找一些图片进行测试(注意找的图片要求是label_colors中的),如对代码有疑问可留言交流。