Hadoop-sqoop

sqoop

1. Sqoop简介及原理

简介:

Sqoop是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysq1.postgresql..)间进行数据的传递,可以将一个关系型数据库(例如: MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop 的HDFS中,也可以将HDFS的数据导进到关系型数据库中。

Sqoop项目开始于2009年,最早是作为Hadoop 的一个第三方模块存在,后来为了让使用者能够快速部署,也为了让开发人员能够更快速的迭代开发,Sqoop独立成为一个Apache项目。v

Sqoop2的最新版本是1.99.7。请注意,2与1不兼容,且特征不完整,它并不打算用于生产部署。

原理:

将导入或导出命令翻译成mapreduce程序来实现。

在翻译出的mapreduce中主要是对inputformat和 outputformat进行定制。

2.sqoop安装部署

解压、改名

[root@kb129 install]# tar -xvf ./sqoop-1.4.7.tar.gz -C /opt/soft/

[root@kb129 soft]# mv sqoop-1.4.7/ sqoop147

拷贝配置文件

[root@kb129 conf]# pwd

/opt/soft/sqoop147/conf

[root@kb129 conf]# cp sqoop-env-template.sh sqoop-env.sh

编辑配置文件

[root@kb129 conf]# vim ./sqoop-env.sh

export HADOOP_COMMON_HOME=/opt/soft/hadoop313

export HADOOP_MAPRED_HOME=/opt/soft/hadoop313

export HBASE_HOME=/opt/soft/hbase235

export HIVE_HOME=/opt/soft/hive312

export HIVE_CONF_DIR=/opt/soft/hive312/conf

export ZOOCFGDIR=/opt/soft/zk345/conf

解压

[root@kb129 install]# tar -xvf ./sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz -C ./

拷贝jar包至sqoop147根路径下

[root@kb129 sqoop-1.4.7.bin__hadoop-2.6.0]# cp ./sqoop-1.4.7.jar /opt/soft/sqoop147/

继续拷贝jar包

[root@kb129 lib]# pwd

/opt/soft/sqoop147/lib

[root@kb129 lib]# cp /opt/soft/hive312/lib/hive-common-3.1.2.jar ./

[root@kb129 lib]# cp /opt/install/sqoop-1.4.7.bin__hadoop-2.6.0/lib/avro-1.8.1.jar ./

[root@kb129 lib]# cp /opt/soft/hive312/lib/mysql-connector-java-8.0.29.jar ./

拷贝完毕:

Hadoop-sqoop_第1张图片

配置sqoop环境变量并source

#SQOOP

export SQOOP_HOME=/opt/soft/sqoop147

export PATH=$SQOOP_HOME/bin:$PATH

验证安装

[root@kb129 lib]# sqoop version

Hadoop-sqoop_第2张图片

3.sqoop操作基本命令

3.1  基本操作:参考 https://www.cnblogs.com/qingyunzong/p/8807252.html

查看sqoop一般操作命令

[root@kb129 lib]# sqoop help

连接mysql命令(\代表换行输入)

[root@kb129 lib]# sqoop list-databases \

 --connect jdbc:mysql://kb129:3306/ \

 --username root \

 --password 123456

Hadoop-sqoop_第3张图片

查看sql50数据库内的表

[root@kb129 lib]# sqoop list-tables --connect jdbc:mysql://kb129:3306/sql50 --username root --password 123456

Hadoop-sqoop_第4张图片

在hive默认库中创建表(来源mysql库中的help_keyword表,仅复制表结构)

[root@kb129 lib]# sqoop create-hive-table \

--connect jdbc:mysql://kb129:3306/mysql \

--username root --password 123456 \

--table help_keyword \

--hive-table hk

3.2  Sqoop import

1、从Mysql导入到HDFS中

1)导入mysql库中的help_keyword的数据到HDFS默认路径上/user/root

sqoop import --connect jdbc:mysql://kb129:3306/mysql --username root --password 123456 --table help_keyword -m 1

导入sql50库中的student表的数据到HDFS默认路径上

sqoop import --connect jdbc:mysql://kb129:3306/sql50 --username root --password 123456 --table student -m 1

2)导入: 指定分隔符,指定导入路径

sqoop import --connect jdbc:mysql://kb129:3306/sql50 --username root --password 123456 --table student --target-dir /kb23/student --fields-terminated-by '\t' -m 1

3)导入数据:带where条件

sqoop import --connect jdbc:mysql://kb129:3306/mysql --username root --password 123456 --where "name='STRING'" --table help_keyword --target-dir /kb23/hk1 -m 1

4)导入:指定自定义查询SQL

sqoop import --connect jdbc:mysql://kb129:3306/mysql --username root --password 123456 --target-dir /kb23/hk2 --query 'select help_keyword_id,name from help_keyword where $CONDITIONS and name="STRING"' --split-by help_keyword_id --fields-terminated-by ':' -m 4

在以上需要按照自定义SQL语句导出数据到HDFS的情况下:

(1)引号问题,要么外层使用单引号,内层使用双引号,$CONDITIONS的$符号不用转义, 要么外层使用双引号,那么内层使用单引号,然后$CONDITIONS的$符号需要转义

(2)自定义的SQL语句中必须带有WHERE \$CONDITIONS

2、把MySQL数据库中的表数据导入到Hive中

1)Sqoop 导入关系型数据到 hive 的过程是先导入到 hdfs,然后再 load 进入 hive

普通导入:数据存储在默认的default hive库中,表名就是对应的mysql的表名

sqoop import --connect jdbc:mysql://kb129:3306/mysql --username root --password 123456 --table help_keyword --hive-import -m 1

导入过程

第一步:导入mysql.help_keyword的数据到hdfs的默认路径

第二步:自动仿造mysql.help_keyword去创建一张hive表, 创建在默认的default库中

第三步:把临时目录中的数据导入到hive表中

2)指定行分隔符和列分隔符,指定hive-import,指定覆盖导入,指定自动创建hive表,指定表名,指定删除中间结果数据目录

sqoop import  \

--connect jdbc:mysql://kb129:3306/mysql  \

--username root  \

--password 123456  \

--table help_keyword  \

--hive-import  \

--hive-overwrite  \

--create-hive-table  \

--delete-target-dir \

--hive-database  kb23db \

--hive-table new_help_keyword

3)增量导入(追加)

(执行增量导入之前,先清空hive数据库中的my_help_keyword表中的数据,方便查看)

从原表501行数据开始到最后,追加到目标表中

sqoop import  \

--connect jdbc:mysql://kb129:3306/mysql  \

--username root  \

--password 123456  \

--table help_keyword  \

--hive-import  \

--incremental  append  \

--hive-database kb23db \

--check-column  help_keyword_id \

--last-value 500  \

-m 1

在实际工作当中,数据的导入,很多时候都是只需要导入增量数据即可,并不需要将表中的数据每次都全部导入到 hive 或者 hdfs 当中去这样会造成数据重复的问题。因此一般都是选用一些字段进行增量的导入, sqoop 支持增量的导入数据。

-- 所谓的增量数据指的是上次至今中间新增加的数据

-- sqoop支持两种模式的增量导入

append追加 根据数值类型字段进行追加导入, 大于指定的last-value

lastmodified 根据时间戳类型字段进行追加, 大于等于指定的last-value

注意在lastmodified模式下,还分为两种情形: append merge-key

增量导入是仅导入新添加的表中的行的技术。

--check-column(col)

用来指定一些列,这些列在增量导入时用来检查这些数据是否作为增量数据进行导入,和关系型数据库中的自增字段及时间戳类似。

注意:这些被指定的列的类型不能使任意字符类型,如 char、varchar 等类型都是不可以的,同时-- check-column 可以去指定多个列。

--incremental(mode)

append:追加,比如对大于 last-value 指定的值之后的记录进行追加导入。

lastmodified:最后的修改时间,追加 last-value 指定的日期之后的记录。

--last-value(value)

指定自从上次导入后列的最大值(大于该指定的值),也可以自己设定某一值。

3、把MySQL数据库中的表数据导入到hbase

3.3  Sqoop export

参考小白篇(十二):sqoop export指令实操_belialxing的博客-CSDN博客

https://blog.csdn.net/d905133872/article/details/129421948?spm=1001.2014.3001.5502

1.将hive中的表数据导入到mysql中

(1)

-- hive创建一张表,默认是textfile类型的

create table if not exists kb23db.export_txt_demo

(

name    string,

address string

);

-- 创建测试数据

insert into kb23db.export_txt_demo values('测试1','上海');

insert into kb23db.export_txt_demo values('测试2','北京');

(2)

-- 创建接收表

create table sql50.export_txt_demo

(

name varchar(10),

address varchar(10)

);

sqoop export --connect 'jdbc:mysql://kb129:3306/sql50' \

--username 'root' \

--password '123456' \

--table 'export_txt_demo' \

--export-dir  /hive312/warehouse/kb23db.db/export_txt_demo \

--input-fields-terminated-by '\001' \

--input-null-string '\\N' \

--input-null-non-string '\\N'

 

参数说明:

--connect '数据库连接' \

--username '数据库账号' \

--password '数据库密码' \

--table '数据库表名' \

--export-dir  集群hdfs中导出的数据目录 \

--input-fields-terminated-by '分隔符,textfile类型默认\001' \

--input-null-string '空值处理:\\N' \

--input-null-non-string '空值处理:\\N'

你可能感兴趣的:(hadoop,sqoop,大数据)