编写一个C++程序总共分为4个步骤
Visual Studio是我们用来编写C++程序的主要工具,我们先将它打开
右键源文件,选择添加->新建项
给C++文件起个名称,然后点击添加即可。
#include
using namespace std;
int main() {
cout << "Hello world" << endl;
system("pause");
return 0;
}
作用:在代码中加一些说明和解释,方便自己或其他程序员程序员阅读代码
两种格式
// 描述信息
/* 描述信息 */
提示:编译器在编译代码时,会忽略注释的内容
作用:给一段指定的内存空间起名,方便操作这段内存
语法:数据类型 变量名 = 初始值;
示例:
#include
using namespace std;
int main() {
//变量的定义
//语法:数据类型 变量名 = 初始值
int a = 10;
cout << "a = " << a << endl;
system("pause");
return 0;
}
注意:C++在创建变量时,必须给变量一个初始值,否则会报错
作用:用于记录程序中不可更改的数据
C++定义常量两种方式
#define 常量名 常量值
const 数据类型 常量名 = 常量值
示例:
//1、宏常量
#define day 7
int main() {
cout << "一周里总共有 " << day << " 天" << endl;
//day = 8; //报错,宏常量不可以修改
//2、const修饰变量
const int month = 12;
cout << "一年里总共有 " << month << " 个月份" << endl;
//month = 24; //报错,常量是不可以修改的
system("pause");
return 0;
}
作用: 关键字是C++中预先保留的单词(标识符)
C++关键字如下:
asm |
do |
if |
return |
typedef |
auto |
double |
inline |
short |
typeid |
bool |
dynamic_cast |
int |
signed |
typename |
break |
else |
long |
sizeof |
union |
case |
enum |
mutable |
static |
unsigned |
catch |
explicit |
namespace |
static_cast |
using |
char |
export |
new |
struct |
virtual |
class |
extern |
operator |
switch |
void |
const |
false |
private |
template |
volatile |
const_cast |
float |
protected |
this |
wchar_t |
continue |
for |
public |
throw |
while |
default |
friend |
register |
true |
|
delete |
goto |
reinterpret_cast |
try |
提示:在给变量或者常量起名称时候,不要用C++得关键字,否则会产生歧义。
作用:C++规定给标识符(变量、常量)命名时,有一套自己的规则
建议:给标识符命名时,争取做到见名知意的效果,方便自己和他人的阅读
C++规定在创建一个变量或者常量时,必须要指定出相应的数据类型,否则无法给变量分配内存
作用:整型变量表示的是整数类型的数据
C++中能够表示整型的类型有以下几种方式,区别在于所占内存空间不同:
数据类型 |
占用空间 |
取值范围 |
short(短整型) |
2字节 |
(-2^15 ~ 2^15-1) |
int(整型) |
4字节 |
(-2^31 ~ 2^31-1) |
long(长整形) |
Windows为4字节,Linux为4字节(32位),8字节(64位) |
(-2^31 ~ 2^31-1) |
long long(长长整形) |
8字节 |
(-2^63 ~ 2^63-1) |
作用: 利用sizeof关键字可以统计数据类型所占内存大小
语法: sizeof( 数据类型 / 变量)
示例:
int main() {
cout << "short 类型所占内存空间为: " << sizeof(short) << endl;
cout << "int 类型所占内存空间为: " << sizeof(int) << endl;
cout << "long 类型所占内存空间为: " << sizeof(long) << endl;
cout << "long long 类型所占内存空间为: " << sizeof(long long) << endl;
system("pause");
return 0;
}
整型结论:short < int <= long <= long long
作用:用于表示小数
浮点型变量分为两种:
两者的区别在于表示的有效数字范围不同。
数据类型 |
占用空间 |
有效数字范围 |
float |
4字节 |
7位有效数字 |
double |
8字节 |
15~16位有效数字 |
示例:
int main() {
float f1 = 3.14f;
double d1 = 3.14;
cout << f1 << endl;
cout << d1<< endl;
cout << "float sizeof = " << sizeof(f1) << endl;
cout << "double sizeof = " << sizeof(d1) << endl;
//科学计数法
float f2 = 3e2; // 3 * 10 ^ 2
cout << "f2 = " << f2 << endl;
float f3 = 3e-2; // 3 * 0.1 ^ 2
cout << "f3 = " << f3 << endl;
system("pause");
return 0;
}
作用: 字符型变量用于显示单个字符
语法:char ch = 'a';
注意1:在显示字符型变量时,用单引号将字符括起来,不要用双引号
注意2:单引号内只能有一个字符,不可以是字符串
示例:
int main() {
char ch = 'a';
cout << ch << endl;
cout << sizeof(char) << endl;
//ch = "abcde"; //错误,不可以用双引号
//ch = 'abcde'; //错误,单引号内只能引用一个字符
cout << (int)ch << endl; //查看字符a对应的ASCII码
ch = 97; //可以直接用ASCII给字符型变量赋值
cout << ch << endl;
system("pause");
return 0;
}
ASCII码表格:
ASCII值 |
控制字符 |
ASCII值 |
字符 |
ASCII值 |
字符 |
ASCII值 |
字符 |
0 |
NUT |
32 |
(space) |
64 |
@ |
96 |
、 |
1 |
SOH |
33 |
! |
65 |
A |
97 |
a |
2 |
STX |
34 |
" |
66 |
B |
98 |
b |
3 |
ETX |
35 |
# |
67 |
C |
99 |
c |
4 |
EOT |
36 |
$ |
68 |
D |
100 |
d |
5 |
ENQ |
37 |
% |
69 |
E |
101 |
e |
6 |
ACK |
38 |
& |
70 |
F |
102 |
f |
7 |
BEL |
39 |
, |
71 |
G |
103 |
g |
8 |
BS |
40 |
( |
72 |
H |
104 |
h |
9 |
HT |
41 |
) |
73 |
I |
105 |
i |
10 |
LF |
42 |
* |
74 |
J |
106 |
j |
11 |
VT |
43 |
+ |
75 |
K |
107 |
k |
12 |
FF |
44 |
, |
76 |
L |
108 |
l |
13 |
CR |
45 |
- |
77 |
M |
109 |
m |
14 |
SO |
46 |
. |
78 |
N |
110 |
n |
15 |
SI |
47 |
/ |
79 |
O |
111 |
o |
16 |
DLE |
48 |
0 |
80 |
P |
112 |
p |
17 |
DCI |
49 |
1 |
81 |
Q |
113 |
q |
18 |
DC2 |
50 |
2 |
82 |
R |
114 |
r |
19 |
DC3 |
51 |
3 |
83 |
S |
115 |
s |
20 |
DC4 |
52 |
4 |
84 |
T |
116 |
t |
21 |
NAK |
53 |
5 |
85 |
U |
117 |
u |
22 |
SYN |
54 |
6 |
86 |
V |
118 |
v |
23 |
TB |
55 |
7 |
87 |
W |
119 |
w |
24 |
CAN |
56 |
8 |
88 |
X |
120 |
x |
25 |
EM |
57 |
9 |
89 |
Y |
121 |
y |
26 |
SUB |
58 |
: |
90 |
Z |
122 |
z |
27 |
ESC |
59 |
; |
91 |
[ |
123 |
{ |
28 |
FS |
60 |
< |
92 |
/ |
124 |
| |
29 |
GS |
61 |
= |
93 |
] |
125 |
} |
30 |
RS |
62 |
> |
94 |
^ |
126 |
` |
31 |
US |
63 |
? |
95 |
_ |
127 |
DEL |
ASCII 码大致由以下两部分组成:
作用: 用于表示一些不能显示出来的ASCII字符
现阶段我们常用的转义字符有: \n \\ \t
转义字符 |
含义 |
ASCII码值(十进制) |
\a |
警报 |
007 |
\b |
退格(BS) ,将当前位置移到前一列 |
008 |
\f |
换页(FF),将当前位置移到下页开头 |
012 |
\n |
换行(LF) ,将当前位置移到下一行开头 |
010 |
\r |
回车(CR) ,将当前位置移到本行开头 |
013 |
\t |
水平制表(HT) (跳到下一个TAB位置) |
009 |
\v |
垂直制表(VT) |
011 |
\\\\ |
代表一个反斜线字符"\" |
092 |
\' |
代表一个单引号(撇号)字符 |
039 |
\" |
代表一个双引号字符 |
034 |
\? |
代表一个问号 |
063 |
\0 |
数字0 |
000 |
\ddd |
8进制转义字符,d范围0~7 |
3位8进制 |
\xhh |
16进制转义字符,h范围09,af,A~F |
3位16进制 |
示例:
int main() {
cout << "\\" << endl;
cout << "\tHello" << endl;
cout << "\n" << endl;
system("pause");
return 0;
}
作用:用于表示一串字符
两种风格
char 变量名[] = "字符串值"
int main() {
char str1[] = "hello world";
cout << str1 << endl;
system("pause");
return 0;
}
注意:C风格的字符串要用双引号括起来
string 变量名 = "字符串值"
int main() {
string str = "hello world";
cout << str << endl;
system("pause");
return 0;
}
注意:C++风格字符串,需要加入头文件==#include\==
作用: 布尔数据类型代表真或假的值
bool类型只有两个值:
bool类型占1个字节大小
示例:
int main() {
bool flag = true;
cout << flag << endl; // 1
flag = false;
cout << flag << endl; // 0
cout << "size of bool = " << sizeof(bool) << endl; //1
system("pause");
return 0;
}
作用:用于从键盘获取数据
关键字:cin
语法: cin >> 变量
示例:
int main(){
//整型输入
int a = 0;
cout << "请输入整型变量:" << endl;
cin >> a;
cout << a << endl;
//浮点型输入
double d = 0;
cout << "请输入浮点型变量:" << endl;
cin >> d;
cout << d << endl;
//字符型输入
char ch = 0;
cout << "请输入字符型变量:" << endl;
cin >> ch;
cout << ch << endl;
//字符串型输入
string str;
cout << "请输入字符串型变量:" << endl;
cin >> str;
cout << str << endl;
//布尔类型输入
bool flag = true;
cout << "请输入布尔型变量:" << endl;
cin >> flag;
cout << flag << endl;
system("pause");
return EXIT_SUCCESS;
}
作用: 用于执行代码的运算
本章我们主要讲解以下几类运算符:
运算符类型 |
作用 |
算术运算符 |
用于处理四则运算 |
赋值运算符 |
用于将表达式的值赋给变量 |
比较运算符 |
用于表达式的比较,并返回一个真值或假值 |
逻辑运算符 |
用于根据表达式的值返回真值或假值 |
作用:用于处理四则运算
算术运算符包括以下符号:
运算符 |
术语 |
示例 |
结果 |
+ |
正号 |
+3 |
3 |
- |
负号 |
-3 |
-3 |
+ |
加 |
10 + 5 |
15 |
- |
减 |
10 - 5 |
5 |
* |
乘 |
10 * 5 |
50 |
/ |
除 |
10 / 5 |
2 |
% |
取模(取余) |
10 % 3 |
1 |
++ |
前置递增 |
a=2; b=++a; |
a=3; b=3; |
++ |
后置递增 |
a=2; b=a++; |
a=3; b=2; |
-- |
前置递减 |
a=2; b=--a; |
a=1; b=1; |
-- |
后置递减 |
a=2; b=a--; |
a=1; b=2; |
示例1:
//加减乘除
int main() {
int a1 = 10;
int b1 = 3;
cout << a1 + b1 << endl;
cout << a1 - b1 << endl;
cout << a1 * b1 << endl;
cout << a1 / b1 << endl; //两个整数相除结果依然是整数
int a2 = 10;
int b2 = 20;
cout << a2 / b2 << endl;
int a3 = 10;
int b3 = 0;
//cout << a3 / b3 << endl; //报错,除数不可以为0
//两个小数可以相除
double d1 = 0.5;
double d2 = 0.25;
cout << d1 / d2 << endl;
system("pause");
return 0;
}
总结:在除法运算中,除数不能为0
示例2:
//取模
int main() {
int a1 = 10;
int b1 = 3;
cout << 10 % 3 << endl;
int a2 = 10;
int b2 = 20;
cout << a2 % b2 << endl;
int a3 = 10;
int b3 = 0;
//cout << a3 % b3 << endl; //取模运算时,除数也不能为0
//两个小数不可以取模
double d1 = 3.14;
double d2 = 1.1;
//cout << d1 % d2 << endl;
system("pause");
return 0;
}
总结:只有整型变量可以进行取模运算
示例3:
//递增
int main() {
//后置递增
int a = 10;
a++; //等价于a = a + 1
cout << a << endl; // 11
//前置递增
int b = 10;
++b;
cout << b << endl; // 11
//区别
//前置递增先对变量进行++,再计算表达式
int a2 = 10;
int b2 = ++a2 * 10;
cout << b2 << endl;
//后置递增先计算表达式,后对变量进行++
int a3 = 10;
int b3 = a3++ * 10;
cout << b3 << endl;
system("pause");
return 0;
}
总结:前置递增先对变量进行++,再计算表达式,后置递增相反
作用: 用于将表达式的值赋给变量
赋值运算符包括以下几个符号:
运算符 |
术语 |
示例 |
结果 |
= |
赋值 |
a=2; b=3; |
a=2; b=3; |
+= |
加等于 |
a=0; a+=2; |
a=2; |
-= |
减等于 |
a=5; a-=3; |
a=2; |
*= |
乘等于 |
a=2; a*=2; |
a=4; |
/= |
除等于 |
a=4; a/=2; |
a=2; |
%= |
模等于 |
a=3; a%2; |
a=1; |
示例:
int main() {
//赋值运算符
// =
int a = 10;
a = 100;
cout << "a = " << a << endl;
// +=
a = 10;
a += 2; // a = a + 2;
cout << "a = " << a << endl;
// -=
a = 10;
a -= 2; // a = a - 2
cout << "a = " << a << endl;
// *=
a = 10;
a *= 2; // a = a * 2
cout << "a = " << a << endl;
// /=
a = 10;
a /= 2; // a = a / 2;
cout << "a = " << a << endl;
// %=
a = 10;
a %= 2; // a = a % 2;
cout << "a = " << a << endl;
system("pause");
return 0;
}
作用: 用于表达式的比较,并返回一个真值或假值
比较运算符有以下符号:
运算符 |
术语 |
示例 |
结果 |
== |
相等于 |
4 == 3 |
0 |
!= |
不等于 |
4 != 3 |
1 |
< |
小于 |
4 < 3 |
0 |
\> |
大于 |
4 > 3 |
1 |
<= |
小于等于 |
4 <= 3 |
0 |
\>= |
大于等于 |
4 >= 1 |
1 |
示例:
int main() {
int a = 10;
int b = 20;
cout << (a == b) << endl; // 0
cout << (a != b) << endl; // 1
cout << (a > b) << endl; // 0
cout << (a < b) << endl; // 1
cout << (a >= b) << endl; // 0
cout << (a <= b) << endl; // 1
system("pause");
return 0;
}
注意:C和C++ 语言的比较运算中, “真”用数字“1”来表示, “假”用数字“0”来表示。
作用: 用于根据表达式的值返回真值或假值
逻辑运算符有以下符号:
运算符 |
术语 |
示例 |
结果 |
! |
非 |
!a |
如果a为假,则!a为真; 如果a为真,则!a为假。 |
&& |
与 |
a && b |
如果a和b都为真,则结果为真,否则为假。 |
|| |
或 |
a || b |
如果a和b有一个为真,则结果为真,二者都为假时,结果为假。 |
示例1: 逻辑非
//逻辑运算符 --- 非
int main() {
int a = 10;
cout << !a << endl; // 0
cout << !!a << endl; // 1
system("pause");
return 0;
}
总结: 真变假,假变真
示例2: 逻辑与
//逻辑运算符 --- 与
int main() {
int a = 10;
int b = 10;
cout << (a && b) << endl;// 1
a = 10;
b = 0;
cout << (a && b) << endl;// 0
a = 0;
b = 0;
cout << (a && b) << endl;// 0
system("pause");
return 0;
}
总结:逻辑与运算符总结: 同真为真,其余为假
示例3: 逻辑或
//逻辑运算符 --- 或
int main() {
int a = 10;
int b = 10;
cout << (a || b) << endl;// 1
a = 10;
b = 0;
cout << (a || b) << endl;// 1
a = 0;
b = 0;
cout << (a || b) << endl;// 0
system("pause");
return 0;
}
逻辑或运算符总结: 同假为假,其余为真
C/C++支持最基本的三种程序运行结构:顺序结构、选择结构、循环结构
作用: 执行满足条件的语句
if语句的三种形式
if(条件){ 条件满足执行的语句 }
示例:
int main() {
//选择结构-单行if语句
//输入一个分数,如果分数大于600分,视为考上一本大学,并在屏幕上打印
int score = 0;
cout << "请输入一个分数:" << endl;
cin >> score;
cout << "您输入的分数为: " << score << endl;
//if语句
//注意事项,在if判断语句后面,不要加分号
if (score > 600)
{
cout << "我考上了一本大学!!!" << endl;
}
system("pause");
return 0;
}
注意:if条件表达式后不要加分号
if(条件){ 条件满足执行的语句 }else{ 条件不满足执行的语句 };
示例:
int main() {
int score = 0;
cout << "请输入考试分数:" << endl;
cin >> score;
if (score > 600)
{
cout << "我考上了一本大学" << endl;
}
else
{
cout << "我未考上一本大学" << endl;
}
system("pause");
return 0;
}
if(条件1){ 条件1满足执行的语句 }else if(条件2){条件2满足执行的语句}... else{ 都不满足执行的语句}
示例:
int main() {
int score = 0;
cout << "请输入考试分数:" << endl;
cin >> score;
if (score > 600)
{
cout << "我考上了一本大学" << endl;
}
else if (score > 500)
{
cout << "我考上了二本大学" << endl;
}
else if (score > 400)
{
cout << "我考上了三本大学" << endl;
}
else
{
cout << "我未考上本科" << endl;
}
system("pause");
return 0;
}
嵌套if语句:在if语句中,可以嵌套使用if语句,达到更精确的条件判断
案例需求:
示例:
int main() {
int score = 0;
cout << "请输入考试分数:" << endl;
cin >> score;
if (score > 600)
{
cout << "我考上了一本大学" << endl;
if (score > 700)
{
cout << "我考上了北大" << endl;
}
else if (score > 650)
{
cout << "我考上了清华" << endl;
}
else
{
cout << "我考上了人大" << endl;
}
}
else if (score > 500)
{
cout << "我考上了二本大学" << endl;
}
else if (score > 400)
{
cout << "我考上了三本大学" << endl;
}
else
{
cout << "我未考上本科" << endl;
}
system("pause");
return 0;
}
练习案例: 三只小猪称体重
有三只小猪ABC,请分别输入三只小猪的体重,并且判断哪只小猪最重?
作用: 通过三目运算符实现简单的判断
语法:表达式1 ? 表达式2 :表达式3
解释:
如果表达式1的值为真,执行表达式2,并返回表达式2的结果;
如果表达式1的值为假,执行表达式3,并返回表达式3的结果。
示例:
int main() {
int a = 10;
int b = 20;
int c = 0;
c = a > b ? a : b;
cout << "c = " << c << endl;
//C++中三目运算符返回的是变量,可以继续赋值
(a > b ? a : b) = 100;
cout << "a = " << a << endl;
cout << "b = " << b << endl;
cout << "c = " << c << endl;
system("pause");
return 0;
}
总结:和if语句比较,三目运算符优点是短小整洁,缺点是如果用嵌套,结构不清晰
作用: 执行多条件分支语句
语法:
switch(表达式)
{
case 结果1:执行语句;break;
case 结果2:执行语句;break;
...
default:执行语句;break;
}
示例:
int main() {
//请给电影评分
//10 ~ 9 经典
// 8 ~ 7 非常好
// 6 ~ 5 一般
// 5分以下 烂片
int score = 0;
cout << "请给电影打分" << endl;
cin >> score;
//表达式类型只能是整型或者字符型
switch (score)
{
case 10:
case 9:
cout << "经典" << endl;
break;
case 8:
cout << "非常好" << endl;
break;
case 7:
case 6:
cout << "一般" << endl;
break;
default:
cout << "烂片" << endl;
break;
}
system("pause");
return 0;
}
注意1:switch语句中表达式类型只能是整型或者字符型
注意2:case里如果没有break,那么程序会一直向下执行
总结:与if语句比,对于多条件判断时,switch的结构清晰,执行效率高,缺点是switch不可以判断区间
作用: 满足循环条件,执行循环语句
语法: while(循环条件){ 循环语句 }
解释:只要循环条件的结果为真,就执行循环语句
示例:
int main() {
int num = 0;
while (num < 10)
{
cout << "num = " << num << endl;
num++;
}
system("pause");
return 0;
}
注意:在执行循环语句时候,程序必须提供跳出循环的出口,否则出现死循环
while循环练习案例:猜数字
案例描述: 系统随机生成一个1到100之间的数字,玩家进行猜测,如果猜错,提示玩家数字过大或过小,如果猜对恭喜玩家胜利,并且退出游戏。
作用: 满足循环条件,执行循环语句
语法: do{ 循环语句 } while(循环条件);
注意: 与while的区别在于do...while会先执行一次循环语句,再判断循环条件
示例:
int main() {
int num = 0;
do
{
cout << num << endl;
num++;
} while (num < 10);
system("pause");
return 0;
}
总结:与while循环区别在于,do...while先执行一次循环语句,再判断循环条件
练习案例:水仙花数
案例描述: 水仙花数是指一个 3 位数,它的每个位上的数字的 3次幂之和等于它本身
例如:1^3 + 5^3+ 3^3 = 153
请利用do...while语句,求出所有3位数中的水仙花数
作用: 满足循环条件,执行循环语句
语法: for(起始表达式;条件表达式;末尾循环体) { 循环语句; }
示例:
int main() {
for (int i = 0; i < 10; i++)
{
cout << i << endl;
}
system("pause");
return 0;
}
详解:
注意:for循环中的表达式,要用分号进行分隔
总结:while , do...while, for都是开发中常用的循环语句,for循环结构比较清晰,比较常用
练习案例:敲桌子
案例描述:从1开始数到数字100, 如果数字个位含有7,或者数字十位含有7,或者该数字是7的倍数,我们打印敲桌子,其余数字直接打印输出。
作用: 在循环体中再嵌套一层循环,解决一些实际问题
例如我们想在屏幕中打印如下图片,就需要利用嵌套循环
示例:
int main() {
//外层循环执行1次,内层循环执行1轮
for (int i = 0; i < 10; i++)
{
for (int j = 0; j < 10; j++)
{
cout << "*" << " ";
}
cout << endl;
}
system("pause");
return 0;
}
练习案例: 乘法口诀表
案例描述:利用嵌套循环,实现九九乘法表
作用: 用于跳出选择结构或者循环结构
break使用的时机:
示例1:
int main() {
//1、在switch 语句中使用break
cout << "请选择您挑战副本的难度:" << endl;
cout << "1、普通" << endl;
cout << "2、中等" << endl;
cout << "3、困难" << endl;
int num = 0;
cin >> num;
switch (num)
{
case 1:
cout << "您选择的是普通难度" << endl;
break;
case 2:
cout << "您选择的是中等难度" << endl;
break;
case 3:
cout << "您选择的是困难难度" << endl;
break;
}
system("pause");
return 0;
}
示例2:
int main() {
//2、在循环语句中用break
for (int i = 0; i < 10; i++)
{
if (i == 5)
{
break; //跳出循环语句
}
cout << i << endl;
}
system("pause");
return 0;
}
示例3:
int main() {
//在嵌套循环语句中使用break,退出内层循环
for (int i = 0; i < 10; i++)
{
for (int j = 0; j < 10; j++)
{
if (j == 5)
{
break;
}
cout << "*" << " ";
}
cout << endl;
}
system("pause");
return 0;
}
作用: 在循环语句中,跳过本次循环中余下尚未执行的语句,继续执行下一次循环
示例:
int main() {
for (int i = 0; i < 100; i++)
{
if (i % 2 == 0)
{
continue;
}
cout << i << endl;
}
system("pause");
return 0;
}
注意:continue并没有使整个循环终止,而break会跳出循环
作用: 可以无条件跳转语句
语法: goto 标记;
解释: 如果标记的名称存在,执行到goto语句时,会跳转到标记的位置
示例:
int main() {
cout << "1" << endl;
goto FLAG;
cout << "2" << endl;
cout << "3" << endl;
cout << "4" << endl;
FLAG:
cout << "5" << endl;
system("pause");
return 0;
}
注意:在程序中不建议使用goto语句,以免造成程序流程混乱
所谓数组,就是一个集合,里面存放了相同类型的数据元素
特点1: 数组中的每个数据元素都是相同的数据类型
特点2: 数组是由连续的内存位置组成的
一维数组定义的三种方式:
数据类型 数组名[ 数组长度 ];
数据类型 数组名[ 数组长度 ] = { 值1,值2 ...};
数据类型 数组名[ ] = { 值1,值2 ...};
示例
int main() {
//定义方式1
//数据类型 数组名[元素个数];
int score[10];
//利用下标赋值
score[0] = 100;
score[1] = 99;
score[2] = 85;
//利用下标输出
cout << score[0] << endl;
cout << score[1] << endl;
cout << score[2] << endl;
//第二种定义方式
//数据类型 数组名[元素个数] = {值1,值2 ,值3 ...};
//如果{}内不足10个数据,剩余数据用0补全
int score2[10] = { 100, 90,80,70,60,50,40,30,20,10 };
//逐个输出
//cout << score2[0] << endl;
//cout << score2[1] << endl;
//一个一个输出太麻烦,因此可以利用循环进行输出
for (int i = 0; i < 10; i++)
{
cout << score2[i] << endl;
}
//定义方式3
//数据类型 数组名[] = {值1,值2 ,值3 ...};
int score3[] = { 100,90,80,70,60,50,40,30,20,10 };
for (int i = 0; i < 10; i++)
{
cout << score3[i] << endl;
}
system("pause");
return 0;
}
总结1:数组名的命名规范与变量名命名规范一致,不要和变量重名
总结2:数组中下标是从0开始索引
一维数组名称的用途:
示例:
int main() {
//数组名用途
//1、可以获取整个数组占用内存空间大小
int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
cout << "整个数组所占内存空间为: " << sizeof(arr) << endl;
cout << "每个元素所占内存空间为: " << sizeof(arr[0]) << endl;
cout << "数组的元素个数为: " << sizeof(arr) / sizeof(arr[0]) << endl;
//2、可以通过数组名获取到数组首地址
cout << "数组首地址为: " << (int)arr << endl;
cout << "数组中第一个元素地址为: " << (int)&arr[0] << endl;
cout << "数组中第二个元素地址为: " << (int)&arr[1] << endl;
//arr = 100; 错误,数组名是常量,因此不可以赋值
system("pause");
return 0;
}
注意:数组名是常量,不可以赋值
总结1:直接打印数组名,可以查看数组所占内存的首地址
总结2:对数组名进行sizeof,可以获取整个数组占内存空间的大小
练习案例1:五只小猪称体重
案例描述:
在一个数组中记录了五只小猪的体重,如:int arr[5] = {300,350,200,400,250};
找出并打印最重的小猪体重。
练习案例2: 数组元素逆置
案例描述: 请声明一个5个元素的数组,并且将元素逆置.
(如原数组元素为:1,3,2,5,4;逆置后输出结果为:4,5,2,3,1);
作用: 最常用的排序算法,对数组内元素进行排序
示例: 将数组 { 4,2,8,0,5,7,1,3,9 } 进行升序排序
int main() {
int arr[9] = { 4,2,8,0,5,7,1,3,9 };
for (int i = 0; i < 9 - 1; i++)
{
for (int j = 0; j < 9 - 1 - i; j++)
{
if (arr[j] > arr[j + 1])
{
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
for (int i = 0; i < 9; i++)
{
cout << arr[i] << endl;
}
system("pause");
return 0;
}
二维数组就是在一维数组上,多加一个维度。
二维数组定义的四种方式:
数据类型 数组名[ 行数 ][ 列数 ];
数据类型 数组名[ 行数 ][ 列数 ] = { {数据1,数据2 } ,{数据3,数据4 } };
数据类型 数组名[ 行数 ][ 列数 ] = { 数据1,数据2,数据3,数据4};
数据类型 数组名[ ][ 列数 ] = { 数据1,数据2,数据3,数据4};
建议:以上4种定义方式,利用第二种更加直观,提高代码的可读性
示例:
int main() {
//方式1
//数组类型 数组名 [行数][列数]
int arr[2][3];
arr[0][0] = 1;
arr[0][1] = 2;
arr[0][2] = 3;
arr[1][0] = 4;
arr[1][1] = 5;
arr[1][2] = 6;
for (int i = 0; i < 2; i++)
{
for (int j = 0; j < 3; j++)
{
cout << arr[i][j] << " ";
}
cout << endl;
}
//方式2
//数据类型 数组名[行数][列数] = { {数据1,数据2 } ,{数据3,数据4 } };
int arr2[2][3] =
{
{1,2,3},//当不足是三个元素时,可以省略,默认为0
{4,5,6}
};
//方式3
//数据类型 数组名[行数][列数] = { 数据1,数据2 ,数据3,数据4 };
int arr3[2][3] = { 1,2,3,4,5,6 };
//方式4
//数据类型 数组名[][列数] = { 数据1,数据2 ,数据3,数据4 };
int arr4[][3] = { 1,2,3,4,5,6 };
system("pause");
return 0;
}
总结:在定义二维数组时,如果初始化了数据,可以省略行数
示例:
int main() {
//二维数组数组名
int arr[2][3] =
{
{1,2,3},
{4,5,6}
};
cout << "二维数组大小: " << sizeof(arr) << endl;
cout << "二维数组一行大小: " << sizeof(arr[0]) << endl;
cout << "二维数组元素大小: " << sizeof(arr[0][0]) << endl;
cout << "二维数组行数: " << sizeof(arr) / sizeof(arr[0]) << endl;
cout << "二维数组列数: " << sizeof(arr[0]) / sizeof(arr[0][0]) << endl;
//地址
cout << "二维数组首地址:" << arr << endl;
cout << "二维数组第一行地址:" << arr[0] << endl;
cout << "二维数组第二行地址:" << arr[1] << endl;
cout << "二维数组第一个元素地址:" << &arr[0][0] << endl;
cout << "二维数组第二个元素地址:" << &arr[0][1] << endl;
system("pause");
return 0;
}
总结1:二维数组名就是这个数组的首地址
总结2:对二维数组名进行sizeof时,可以获取整个二维数组占用的内存空间大小
考试成绩统计:
案例描述:有三名同学(张三,李四,王五),在一次考试中的成绩分别如下表,请分别输出三名同学的总成绩
语文 |
数学 |
英语 |
|
张三 |
100 |
100 |
100 |
李四 |
90 |
50 |
100 |
王五 |
60 |
70 |
80 |
参考答案:
int main() {
int scores[3][3] =
{
{100,100,100},
{90,50,100},
{60,70,80},
};
string names[3] = { "张三","李四","王五" };
for (int i = 0; i < 3; i++)
{
int sum = 0;
for (int j = 0; j < 3; j++)
{
sum += scores[i][j];
}
cout << names[i] << "同学总成绩为: " << sum << endl;
}
system("pause");
return 0;
}
作用: 将一段经常使用的代码封装起来,减少重复代码
一个较大的程序,一般分为若干个程序块,每个模块实现特定的功能。
函数的定义一般主要有5个步骤:
1、返回值类型
2、函数名
3、参数表列
4、函数体语句
5、return 表达式
语法:
返回值类型 函数名 (参数列表)
{
函数体语句
return表达式
}
示例: 定义一个加法函数,实现两个数相加
//函数定义
int add(int num1, int num2)
{
int sum = num1 + num2;
return sum;
}
功能: 使用定义好的函数
语法: 函数名(参数)
示例:
//函数定义
int add(int num1, int num2) //定义中的num1,num2称为形式参数,简称形参
{
int sum = num1 + num2;
return sum;
}
int main() {
int a = 10;
int b = 10;
//调用add函数
int sum = add(a, b);//调用时的a,b称为实际参数,简称实参
cout << "sum = " << sum << endl;
a = 100;
b = 100;
sum = add(a, b);
cout << "sum = " << sum << endl;
system("pause");
return 0;
}
总结:函数定义里小括号内称为形参,函数调用时传入的参数称为实参
示例:
void swap(int num1, int num2)
{
cout << "交换前:" << endl;
cout << "num1 = " << num1 << endl;
cout << "num2 = " << num2 << endl;
int temp = num1;
num1 = num2;
num2 = temp;
cout << "交换后:" << endl;
cout << "num1 = " << num1 << endl;
cout << "num2 = " << num2 << endl;
//return ; 当函数声明时候,不需要返回值,可以不写return
}
int main() {
int a = 10;
int b = 20;
swap(a, b);
cout << "mian中的 a = " << a << endl;
cout << "mian中的 b = " << b << endl;
system("pause");
return 0;
}
总结: 值传递时,形参是修饰不了实参的
常见的函数样式有4种
示例:
//函数常见样式
//1、 无参无返
void test01()
{
//void a = 10; //无类型不可以创建变量,原因无法分配内存
cout << "this is test01" << endl;
//test01(); 函数调用
}
//2、 有参无返
void test02(int a)
{
cout << "this is test02" << endl;
cout << "a = " << a << endl;
}
//3、无参有返
int test03()
{
cout << "this is test03 " << endl;
return 10;
}
//4、有参有返
int test04(int a, int b)
{
cout << "this is test04 " << endl;
int sum = a + b;
return sum;
}
作用: 告诉编译器函数名称及如何调用函数。函数的实际主体可以单独定义。
示例:
//声明可以多次,定义只能一次
//声明
int max(int a, int b);
int max(int a, int b);
//定义
int max(int a, int b)
{
return a > b ? a : b;
}
int main() {
int a = 100;
int b = 200;
cout << max(a, b) << endl;
system("pause");
return 0;
}
作用: 让代码结构更加清晰
函数分文件编写一般有4个步骤
示例:
//swap.h文件
#include
using namespace std;
//实现两个数字交换的函数声明
void swap(int a, int b);
//swap.cpp文件
#include "swap.h"
void swap(int a, int b)
{
int temp = a;
a = b;
b = temp;
cout << "a = " << a << endl;
cout << "b = " << b << endl;
}
//main函数文件
#include "swap.h"
int main() {
int a = 100;
int b = 200;
swap(a, b);
system("pause");
return 0;
}
指针的作用: 可以通过指针间接访问内存
指针变量定义语法: 数据类型 * 变量名;
示例:
int main() {
//1、指针的定义
int a = 10; //定义整型变量a
//指针定义语法: 数据类型 * 变量名 ;
int * p;
//指针变量赋值
p = &a; //指针指向变量a的地址
cout << &a << endl; //打印数据a的地址
cout << p << endl; //打印指针变量p
//2、指针的使用
//通过*操作指针变量指向的内存
cout << "*p = " << *p << endl;
system("pause");
return 0;
}
指针变量和普通变量的区别
总结1: 我们可以通过 & 符号 获取变量的地址
总结2:利用指针可以记录地址
总结3:对指针变量解引用,可以操作指针指向的内存
提问:指针也是种数据类型,那么这种数据类型占用多少内存空间?
示例:
int main() {
int a = 10;
int * p;
p = &a; //指针指向数据a的地址
cout << *p << endl; //* 解引用
cout << sizeof(p) << endl;
cout << sizeof(char *) << endl;
cout << sizeof(float *) << endl;
cout << sizeof(double *) << endl;
system("pause");
return 0;
}
总结:所有指针类型在32位操作系统下是4个字节
空指针:指针变量指向内存中编号为0的空间
用途: 初始化指针变量
注意: 空指针指向的内存是不可以访问的
示例1:空指针
int main() {
//指针变量p指向内存地址编号为0的空间
int * p = NULL;
//访问空指针报错
//内存编号0 ~255为系统占用内存,不允许用户访问
cout << *p << endl;
system("pause");
return 0;
}
野指针:指针变量指向非法的内存空间
示例2:野指针
int main() {
//指针变量p指向内存地址编号为0x1100的空间
int * p = (int *)0x1100;
//访问野指针报错
cout << *p << endl;
system("pause");
return 0;
}
总结:空指针和野指针都不是我们申请的空间,因此不要访问。
const修饰指针有三种情况
示例:
int main() {
int a = 10;
int b = 10;
//const修饰的是指针,指针指向可以改,指针指向的值不可以更改
const int * p1 = &a;
p1 = &b; //正确
//*p1 = 100; 报错
//const修饰的是常量,指针指向不可以改,指针指向的值可以更改
int * const p2 = &a;
//p2 = &b; //错误
*p2 = 100; //正确
//const既修饰指针又修饰常量
const int * const p3 = &a;
//p3 = &b; //错误
//*p3 = 100; //错误
system("pause");
return 0;
}
技巧:看const右侧紧跟着的是指针还是常量, 是指针就是常量指针,是常量就是指针常量
作用: 利用指针访问数组中元素
示例:
int main() {
int arr[] = { 1,2,3,4,5,6,7,8,9,10 };
int * p = arr; //指向数组的指针
cout << "第一个元素: " << arr[0] << endl;
cout << "指针访问第一个元素: " << *p << endl;
for (int i = 0; i < 10; i++)
{
//利用指针遍历数组
cout << *p << endl;
p++;
}
system("pause");
return 0;
}
作用: 利用指针作函数参数,可以修改实参的值
示例:
//值传递
void swap1(int a ,int b)
{
int temp = a;
a = b;
b = temp;
}
//地址传递
void swap2(int * p1, int *p2)
{
int temp = *p1;
*p1 = *p2;
*p2 = temp;
}
int main() {
int a = 10;
int b = 20;
swap1(a, b); // 值传递不会改变实参
swap2(&a, &b); //地址传递会改变实参
cout << "a = " << a << endl;
cout << "b = " << b << endl;
system("pause");
return 0;
}
总结:如果不想修改实参,就用值传递,如果想修改实参,就用地址传递
案例描述: 封装一个函数,利用冒泡排序,实现对整型数组的升序排序
例如数组:int arr[10] = { 4,3,6,9,1,2,10,8,7,5 };
示例:
//冒泡排序函数
void bubbleSort(int * arr, int len) //int * arr 也可以写为int arr[]
{
for (int i = 0; i < len - 1; i++)
{
for (int j = 0; j < len - 1 - i; j++)
{
if (arr[j] > arr[j + 1])
{
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
//打印数组函数
void printArray(int arr[], int len)
{
for (int i = 0; i < len; i++)
{
cout << arr[i] << endl;
}
}
int main() {
int arr[10] = { 4,3,6,9,1,2,10,8,7,5 };
int len = sizeof(arr) / sizeof(int);
bubbleSort(arr, len);
printArray(arr, len);
system("pause");
return 0;
}
总结:当数组名传入到函数作为参数时,被退化为指向首元素的指针
结构体属于用户自定义的数据类型,允许用户存储不同的数据类型
语法:struct 结构体名 { 结构体成员列表 };
通过结构体创建变量的方式有三种:
示例:
//结构体定义
struct student
{
//成员列表
string name; //姓名
int age; //年龄
int score; //分数
} stu3; //结构体变量创建方式3
int main() {
//结构体变量创建方式1
struct student stu1; //struct 关键字可以省略
stu1.name = "张三";
stu1.age = 18;
stu1.score = 100;
cout << "姓名:" << stu1.name << " 年龄:" << stu1.age << " 分数:" << stu1.score << endl;
//结构体变量创建方式2
struct student stu2 = { "李四",19,60 };
cout << "姓名:" << stu2.name << " 年龄:" << stu2.age << " 分数:" << stu2.score << endl;
stu3.name = "王五";
stu3.age = 18;
stu3.score = 80;
cout << "姓名:" << stu3.name << " 年龄:" << stu3.age << " 分数:" << stu3.score << endl;
system("pause");
return 0;
}
总结1:定义结构体时的关键字是struct,不可省略
总结2:创建结构体变量时,关键字struct可以省略
总结3:结构体变量利用操作符 ''.'' 访问成员
作用: 将自定义的结构体放入到数组中方便维护
语法: struct 结构体名 数组名[元素个数] = { {} , {} , ... {} }
示例:
//结构体定义
struct student
{
//成员列表
string name; //姓名
int age; //年龄
int score; //分数
};
int main() {
//结构体数组
struct student arr[3]=
{
{"张三",18,80 },
{"李四",19,60 },
{"王五",20,70 }
};
for (int i = 0; i < 3; i++)
{
cout << "姓名:" << arr[i].name << " 年龄:" << arr[i].age << " 分数:" << arr[i].score << endl;
}
system("pause");
return 0;
}
作用: 通过指针访问结构体中的成员
->
可以通过结构体指针访问结构体属性示例:
//结构体定义
struct student
{
//成员列表
string name; //姓名
int age; //年龄
int score; //分数
};
int main() {
struct student stu = { "张三",18,100, };
struct student * p = &stu;
p->score = 80; //指针通过 -> 操作符可以访问成员
cout << "姓名:" << p->name << " 年龄:" << p->age << " 分数:" << p->score << endl;
system("pause");
return 0;
}
总结:结构体指针可以通过 -> 操作符 来访问结构体中的成员
作用: 结构体中的成员可以是另一个结构体
例如: 每个老师辅导一个学员,一个老师的结构体中,记录一个学生的结构体
示例:
//学生结构体定义
struct student
{
//成员列表
string name; //姓名
int age; //年龄
int score; //分数
};
//教师结构体定义
struct teacher
{
//成员列表
int id; //职工编号
string name; //教师姓名
int age; //教师年龄
struct student stu; //子结构体 学生
};
int main() {
struct teacher t1;
t1.id = 10000;
t1.name = "老王";
t1.age = 40;
t1.stu.name = "张三";
t1.stu.age = 18;
t1.stu.score = 100;
cout << "教师 职工编号: " << t1.id << " 姓名: " << t1.name << " 年龄: " << t1.age << endl;
cout << "辅导学员 姓名: " << t1.stu.name << " 年龄:" << t1.stu.age << " 考试分数: " << t1.stu.score << endl;
system("pause");
return 0;
}
总结: 在结构体中可以定义另一个结构体作为成员,用来解决实际问题
作用: 将结构体作为参数向函数中传递
传递方式有两种:
示例:
//学生结构体定义
struct student
{
//成员列表
string name; //姓名
int age; //年龄
int score; //分数
};
//值传递
void printStudent(student stu )
{
stu.age = 28;
cout << "子函数中 姓名:" << stu.name << " 年龄: " << stu.age << " 分数:" << stu.score << endl;
}
//地址传递
void printStudent2(student *stu)
{
stu->age = 28;
cout << "子函数中 姓名:" << stu->name << " 年龄: " << stu->age << " 分数:" << stu->score << endl;
}
int main() {
student stu = { "张三",18,100};
//值传递
printStudent(stu);
cout << "主函数中 姓名:" << stu.name << " 年龄: " << stu.age << " 分数:" << stu.score << endl;
cout << endl;
//地址传递
printStudent2(&stu);
cout << "主函数中 姓名:" << stu.name << " 年龄: " << stu.age << " 分数:" << stu.score << endl;
system("pause");
return 0;
}
总结:如果不想修改主函数中的数据,用值传递,反之用地址传递
作用: 用const来防止误操作
示例:
//学生结构体定义
struct student
{
//成员列表
string name; //姓名
int age; //年龄
int score; //分数
};
//const使用场景
void printStudent(const student *stu) //加const防止函数体中的误操作
{
//stu->age = 100; //操作失败,因为加了const修饰
cout << "姓名:" << stu->name << " 年龄:" << stu->age << " 分数:" << stu->score << endl;
}
int main() {
student stu = { "张三",18,100 };
printStudent(&stu);
system("pause");
return 0;
}
案例描述:
学校正在做毕设项目,每名老师带领5个学生,总共有3名老师,需求如下
设计学生和老师的结构体,其中在老师的结构体中,有老师姓名和一个存放5名学生的数组作为成员
学生的成员有姓名、考试分数,创建数组存放3名老师,通过函数给每个老师及所带的学生赋值
最终打印出老师数据以及老师所带的学生数据。
示例:
struct Student
{
string name;
int score;
};
struct Teacher
{
string name;
Student sArray[5];
};
void allocateSpace(Teacher tArray[] , int len)
{
string tName = "教师";
string sName = "学生";
string nameSeed = "ABCDE";
for (int i = 0; i < len; i++)
{
tArray[i].name = tName + nameSeed[i];
for (int j = 0; j < 5; j++)
{
tArray[i].sArray[j].name = sName + nameSeed[j];
tArray[i].sArray[j].score = rand() % 61 + 40;
}
}
}
void printTeachers(Teacher tArray[], int len)
{
for (int i = 0; i < len; i++)
{
cout << tArray[i].name << endl;
for (int j = 0; j < 5; j++)
{
cout << "\t姓名:" << tArray[i].sArray[j].name << " 分数:" << tArray[i].sArray[j].score << endl;
}
}
}
int main() {
srand((unsigned int)time(NULL)); //随机数种子 头文件 #include
Teacher tArray[3]; //老师数组
int len = sizeof(tArray) / sizeof(Teacher);
allocateSpace(tArray, len); //创建数据
printTeachers(tArray, len); //打印数据
system("pause");
return 0;
}
案例描述:
设计一个英雄的结构体,包括成员姓名,年龄,性别;创建结构体数组,数组中存放5名英雄。
通过冒泡排序的算法,将数组中的英雄按照年龄进行升序排序,最终打印排序后的结果。
五名英雄信息如下:
{"刘备",23,"男"},
{"关羽",22,"男"},
{"张飞",20,"男"},
{"赵云",21,"男"},
{"貂蝉",19,"女"},
示例:
//英雄结构体
struct hero
{
string name;
int age;
string sex;
};
//冒泡排序
void bubbleSort(hero arr[] , int len)
{
for (int i = 0; i < len - 1; i++)
{
for (int j = 0; j < len - 1 - i; j++)
{
if (arr[j].age > arr[j + 1].age)
{
hero temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
//打印数组
void printHeros(hero arr[], int len)
{
for (int i = 0; i < len; i++)
{
cout << "姓名: " << arr[i].name << " 性别: " << arr[i].sex << " 年龄: " << arr[i].age << endl;
}
}
int main() {
struct hero arr[5] =
{
{"刘备",23,"男"},
{"关羽",22,"男"},
{"张飞",20,"男"},
{"赵云",21,"男"},
{"貂蝉",19,"女"},
};
int len = sizeof(arr) / sizeof(hero); //获取数组元素个数
bubbleSort(arr, len); //排序
printHeros(arr, len); //打印
system("pause");
return 0;
}
技术的发展日新月异,随着时间推移,无法保证本博客所有内容的正确性。如有误导,请大家见谅,欢迎评论区指正!
开源库地址,欢迎点亮:
GitHub: https://github.com/ITMingliang
Gitee: https://gitee.com/mingliang_it
GitLab: https://gitlab.com/ITMingliang
建群声明: 本着技术在于分享,方便大家交流学习的初心,特此建立【编程内功修炼交流群】,为大家答疑解惑。热烈欢迎各位爱交流学习的程序员进群,也希望进群的大佬能不吝分享自己遇到的技术问题和学习心得!进群方式:扫码关注公众号,后台回复【进群】