ArrayList 和 LinkedList 有什么区别,是面试官非常喜欢问的一个问题。可能大部分小伙伴和我一样,能回答出“ArrayList 是基于数组实现的,LinkedList 是基于双向链表实现的。”
关于这一点,我之前的文章里也提到过了。但说实话,这样苍白的回答并不能令面试官感到满意,他还想知道的更多。
那假如小伙伴们继续做出下面这样的回答:
“ArrayList 在新增和删除元素时,因为涉及到数组复制,所以效率比 LinkedList 低,而在遍历的时候,ArrayList 的效率要高于 LinkedList。”
面试官会感到满意吗?我只能说,如果面试官比较仁慈的话,他可能会让我们回答下一个问题;否则的话,他会让我们回家等通知,这一等,可能意味着杳无音讯了。
为什么会这样呢?为什么为什么?回答的不对吗?
暴躁的小伙伴请喝口奶茶冷静一下。冷静下来后,请随我来,让我们一起肩并肩、手拉手地深入地研究一下 ArrayList 和 LinkedList 的数据结构、实现原理以及源码,可能神秘的面纱就揭开了。
01、ArrayList 是如何实现的?
ArrayList 实现了 List 接口,继承了 AbstractList 抽象类,底层是基于数组实现的,并且实现了动态扩容。
public class ArrayList extends AbstractList
implements List, RandomAccess, Cloneable, java.io.Serializable
{ private static final int DEFAULT_CAPACITY = 10;
transient Object[] elementData;
private int size; }
ArrayList 还实现了 RandomAccess 接口,这是一个标记接口:
public interface RandomAccess {}
内部是空的,标记“实现了这个接口的类支持快速(通常是固定时间)随机访问”。快速随机访问是什么意思呢?就是说不需要遍历,就可以通过下标(索引)直接访问到内存地址。
public E get( int index )
{
Objects.checkIndex( index, size );
return(elementData( index ) );
}
E elementData( int index )
{
return( (E) elementData[index]);
}
ArrayList 还实现了 Cloneable 接口,这表明 ArrayList 是支持拷贝的。ArrayList 内部的确也重写了 Object 类的 clone() 方法。
public Object clone()
{
try {
ArrayList> v = (ArrayList>) super.clone();
v.elementData = Arrays.copyOf( elementData, size ); v.modCount = 0;
return(v);
} catch ( CloneNotSupportedException e ) {
/* this shouldn't happen, since we are Cloneable */
throw new InternalError( e );
}
}
ArrayList 还实现了 Serializable 接口,同样是一个标记接口:
public interface Serializable {}
内部也是空的,标记“实现了这个接口的类支持序列化”。序列化是什么意思呢?Java 的序列化是指,将对象转换成以字节序列的形式来表示,这些字节序中包含了对象的字段和方法。序列化后的对象可以被写到数据库、写到文件,也可用于网络传输。
眼睛雪亮的小伙伴可能会注意到,ArrayList 中的关键字段 elementData 使用了 transient 关键字修饰,这个关键字的作用是,让它修饰的字段不被序列化。
这不前后矛盾吗?一个类既然实现了 Serilizable 接口,肯定是想要被序列化的,对吧?那为什么保存关键数据的 elementData 又不想被序列化呢?
这还得从 “ArrayList 是基于数组实现的”开始说起。大家都知道,数组是定长的,就是说,数组一旦声明了,长度(容量)就是固定的,不能像某些东西一样伸缩自如。这就很麻烦,数组一旦装满了,就不能添加新的元素进来了。
ArrayList 不想像数组这样活着,它想能屈能伸,所以它实现了动态扩容。一旦在添加元素的时候,发现容量用满了 s == elementData.length,就按照原来数组的 1.5 倍(oldCapacity >> 1)进行扩容。扩容之后,再将原有的数组复制到新分配的内存地址上 Arrays.copyOf(elementData, newCapacity)。
private void add( E e, Object[] elementData, int s )
{
if ( s == elementData.length )
elementData = grow();
elementData[s] = e; size = s + 1;
}
private Object[] grow()
{
return(grow( size + 1 ) );
}
private Object[] grow( int minCapacity )
{
int oldCapacity = elementData.length;
if ( oldCapacity > 0 || elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA )
{
int newCapacity = ArraysSupport.newLength( oldCapacity,
minCapacity - oldCapacity, /* minimum growth */
oldCapacity >> 1 /* preferred growth */ );
return(elementData = Arrays.copyOf( elementData, newCapacity ) );
} else {
return(elementData = new Object[Math.max( DEFAULT_CAPACITY, minCapacity )]);
}
}
动态扩容意味着什么?大家伙想一下。嗯,还是我来告诉大家答案吧,有点迫不及待。
意味着数组的实际大小可能永远无法被填满的,总有多余出来空置的内存空间。
比如说,默认的数组大小是 10,当添加第 11 个元素的时候,数组的长度扩容了 1.5 倍,也就是 15,意味着还有 4 个内存空间是闲置的,对吧?
序列化的时候,如果把整个数组都序列化的话,是不是就多序列化了 4 个内存空间。当存储的元素数量非常非常多的时候,闲置的空间就非常非常大,序列化耗费的时间就会非常非常多。
于是,ArrayList 做了一个愉快而又聪明的决定,内部提供了两个私有方法 writeObject 和 readObject 来完成序列化和反序列化。
private void writeObject( java.io.ObjectOutputStream s )
throws java.io.IOException
{
/* Write out element count, and any hidden stuff */
int expectedModCount = modCount;
s.defaultWriteObject();
/* Write out size as capacity for behavioral compatibility with clone() */
s.writeInt( size );
/* Write out all elements in the proper order. */
for ( int i = 0; i < size; i++ )
{
s.writeObject( elementData[i] );
}
if ( modCount != expectedModCount )
{
throw new ConcurrentModificationException();
}
}
从 writeObject 方法的源码中可以看得出,它使用了 ArrayList 的实际大小 size 而不是数组的长度(elementData.length)来作为元素的上限进行序列化。
此处应该有掌声啊!不是为我,为 Java 源码的作者们,他们真的是太厉害了,可以用两个词来形容他们——殚精竭虑、精益求精。
02、LinkedList 是如何实现的?
LinkedList 是一个继承自 AbstractSequentialList 的双向链表,因此它也可以被当作堆栈、队列或双端队列进行操作。
public class LinkedList
extends AbstractSequentialList
implements List, Deque, Cloneable, java.io.Serializable
{ transient int size = 0;
transient Node first;
transient Node last; }
LinkedList 内部定义了一个 Node 节点,它包含 3 个部分:元素内容 item,前引用 prev 和后引用 next。代码如下所示:
private static class Node {
E item; LinkedList.Node next; LinkedList.Node prev; Node( LinkedList.Node prev, E element, LinkedList.Node next )
{
this.item = element;
this.next = next;
this.prev = prev;
}
}
LinkedList 还实现了 Cloneable 接口,这表明 LinkedList 是支持拷贝的。
LinkedList 还实现了 Serializable 接口,这表明 LinkedList 是支持序列化的。眼睛雪亮的小伙伴可能又注意到了,LinkedList 中的关键字段 size、first、last 都使用了 transient 关键字修饰,这不又矛盾了吗?到底是想序列化还是不想序列化?
答案是 LinkedList 想按照自己的方式序列化,来看它自己实现的 writeObject() 方法:
private void writeObject( java.io.ObjectOutputStream s )
throws java.io.IOException
{
/* Write out any hidden serialization magic */
s.defaultWriteObject();
/* Write out size */
s.writeInt( size );
/* Write out all elements in the proper order. */
for ( LinkedList.Node x = first; x != null; x = x.next )
s.writeObject( x.item );
}
发现没?LinkedList 在序列化的时候只保留了元素的内容 item,并没有保留元素的前后引用。这样就节省了不少内存空间,对吧?
那有些小伙伴可能就疑惑了,只保留元素内容,不保留前后引用,那反序列化的时候怎么办?
private void readObject( java.io.ObjectInputStream s )
throws java.io.IOException, ClassNotFoundException
{
/* Read in any hidden serialization magic */
s.defaultReadObject();
/* Read in size */
int size = s.readInt();
/* Read in all elements in the proper order. */
for ( int i = 0; i < size; i++ )
linkLast( (E) s.readObject() );
}
void linkLast( E e )
{
final LinkedList.Node l = last;
final LinkedList.Node newNode = new LinkedList.Node<>( l, e, null );
last = newNode;
if ( l == null )
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}
注意 for 循环中的 linkLast() 方法,它可以把链表重新链接起来,这样就恢复了链表序列化之前的顺序。很妙,对吧?
和 ArrayList 相比,LinkedList 没有实现 RandomAccess 接口,这是因为 LinkedList 存储数据的内存地址是不连续的,所以不支持随机访问。
03、ArrayList 和 LinkedList 新增元素时究竟谁快?
前面我们已经从多个维度了解了 ArrayList 和 LinkedList 的实现原理和各自的特点。那接下来,我们就来聊聊 ArrayList 和 LinkedList 在新增元素时究竟谁快?
1)ArrayList
ArrayList 新增元素有两种情况,一种是直接将元素添加到数组末尾,一种是将元素插入到指定位置。
添加到数组末尾的源码:
public boolean add( E e )
{
modCount++; add( e, elementData, size );
return(true);
}
private void add( E e, Object[] elementData, int s )
{
if ( s == elementData.length )
elementData = grow();
elementData[s] = e; size = s + 1;
}
很简单,先判断是否需要扩容,然后直接通过索引将元素添加到末尾。
插入到指定位置的源码:
public void add( int index, E element )
{
rangeCheckForAdd( index );
modCount++; final int s;
Object[] elementData; if ( (s = size) == (elementData = this.elementData).length )
elementData = grow();
System.arraycopy( elementData, index,
elementData, index + 1,
s - index );
elementData[index] = element;
size = s + 1;
}
先检查插入的位置是否在合理的范围之内,然后判断是否需要扩容,再把该位置以后的元素复制到新添加元素的位置之后,最后通过索引将元素添加到指定的位置。这种情况是非常伤的,性能会比较差。
2)LinkedList
LinkedList 新增元素也有两种情况,一种是直接将元素添加到队尾,一种是将元素插入到指定位置。
添加到队尾的源码:
public boolean add( E e )
{
linkLast( e ); return(true);
}
void linkLast( E e )
{
final LinkedList.Node l = last;
final LinkedList.Node newNode = new LinkedList.Node<>( l, e, null );
last = newNode; if ( l == null )
first = newNode;
else
l.next = newNode; size++; modCount++;
}
先将队尾的节点 last 存放到临时变量 l 中(不是说不建议使用 I 作为变量名吗?Java 的作者们明知故犯啊),然后生成新的 Node 节点,并赋给 last,如果 l 为 null,说明是第一次添加,所以 first 为新的节点;否则将新的节点赋给之前 last 的 next。
插入到指定位置的源码:
public void add( int index, E element )
{
checkPositionIndex( index );
if ( index == size )
linkLast( element );
else
linkBefore( element, node( index ) );
}
LinkedList.Node node( int index )
{
/* assert isElementIndex(index); */
if ( index < (size >> 1) )
{
LinkedList.Node x = first;
for ( int i = 0; i < index; i++ )
x = x.next;
return(x);
} else {
LinkedList.Node x = last;
for ( int i = size - 1; i > index; i-- )
x = x.prev;
return(x);
}
}
void linkBefore( E e, LinkedList.Node succ ) /* assert succ != null; */
{
final LinkedList.Node pred = succ.prev; final LinkedList.Node newNode = new LinkedList.Node<>( pred, e, succ ); succ.prev = newNode; if ( pred == null )
first = newNode;
else
pred.next = newNode; size++; modCount++;
}
先检查插入的位置是否在合理的范围之内,然后判断插入的位置是否是队尾,如果是,添加到队尾;否则执行 linkBefore() 方法。
在执行 linkBefore() 方法之前,会调用 node() 方法查找指定位置上的元素,这一步是需要遍历 LinkedList 的。如果插入的位置靠前前半段,就从队头开始往后找;否则从队尾往前找。也就是说,如果插入的位置越靠近 LinkedList 的中间位置,遍历所花费的时间就越多。
找到指定位置上的元素(succ)之后,就开始执行 linkBefore() 方法了,先将 succ 的前一个节点(prev)存放到临时变量 pred 中,然后生成新的 Node 节点(newNode),并将 succ 的前一个节点变更为 newNode,如果 pred 为 null,说明插入的是队头,所以 first 为新节点;否则将 pred 的后一个节点变更为 newNode。
经过源码分析以后,小伙伴们是不是在想:“好像 ArrayList 在新增元素的时候效率并不一定比 LinkedList 低啊!”
当两者的起始长度是一样的情况下:
- 如果是从集合的头部新增元素,ArrayList 花费的时间应该比 LinkedList 多,因为需要对头部以后的元素进行复制。
public class ArrayListTest {
public static void addFromHeaderTest( int num )
{
ArrayList list = new ArrayList( num );
int i = 0;
long timeStart = System.currentTimeMillis();
while ( i < num )
{
list.add( 0, i + "沉默王二" );
i++;
}
long timeEnd = System.currentTimeMillis();
System.out.println( "ArrayList从集合头部位置新增元素花费的时间" + (timeEnd - timeStart) );
}
} /**
*
*/
public class LinkedListTest {
public static void addFromHeaderTest( int num )
{
LinkedList list = new LinkedList();
int i = 0;
long timeStart = System.currentTimeMillis();
while ( i < num )
{
list.addFirst( i + "沉默王二" );
i++;
}
long timeEnd = System.currentTimeMillis();
System.out.println( "LinkedList从集合头部位置新增元素花费的时间" + (timeEnd - timeStart) );
}
}
num 为 10000,代码实测后的时间如下所示:
ArrayList从集合头部位置新增元素花费的时间595LinkedList从集合头部位置新增元素花费的时间15复制代码
ArrayList 花费的时间比 LinkedList 要多很多。
- 如果是从集合的中间位置新增元素,ArrayList 花费的时间搞不好要比 LinkedList 少,因为 LinkedList 需要遍历。
public class ArrayListTest {
public static void addFromMidTest( int num )
{
ArrayList list = new ArrayList( num );
int i = 0;
long timeStart = System.currentTimeMillis();
while ( i < num )
{
int temp = list.size();
list.add( temp / 2 + "沉默王二" );
i++;
}
long timeEnd = System.currentTimeMillis();
System.out.println( "ArrayList从集合中间位置新增元素花费的时间" + (timeEnd - timeStart) );
}
} public class LinkedListTest {
public static void addFromMidTest( int num )
{
LinkedList list = new LinkedList();
int i = 0;
long timeStart = System.currentTimeMillis();
while ( i < num )
{
int temp = list.size();
list.add( temp / 2, i + "沉默王二" );
i++;
}
long timeEnd = System.currentTimeMillis();
System.out.println( "LinkedList从集合中间位置新增元素花费的时间" + (timeEnd - timeStart) );
}
}
num 为 10000,代码实测后的时间如下所示:
ArrayList从集合中间位置新增元素花费的时间1LinkedList从集合中间位置新增元素花费的时间101
ArrayList 花费的时间比 LinkedList 要少很多很多。
- 如果是从集合的尾部新增元素,ArrayList 花费的时间应该比 LinkedList 少,因为数组是一段连续的内存空间,也不需要复制数组;而链表需要创建新的对象,前后引用也要重新排列。
public class ArrayListTest {
public static void addFromTailTest( int num )
{
ArrayList list = new ArrayList( num );
int i = 0;
long timeStart = System.currentTimeMillis();
while ( i < num )
{
list.add( i + "沉默王二" );
i++;
}
long timeEnd = System.currentTimeMillis();
System.out.println( "ArrayList从集合尾部位置新增元素花费的时间" + (timeEnd - timeStart) );
}
} public class LinkedListTest {
public static void addFromTailTest( int num )
{
LinkedList list = new LinkedList();
int i = 0;
long timeStart = System.currentTimeMillis();
while ( i < num )
{
list.add( i + "沉默王二" );
i++;
}
long timeEnd = System.currentTimeMillis();
System.out.println( "LinkedList从集合尾部位置新增元素花费的时间" + (timeEnd - timeStart) );
}
}
num 为 10000,代码实测后的时间如下所示:
ArrayList从集合尾部位置新增元素花费的时间69LinkedList从集合尾部位置新增元素花费的时间193
ArrayList 花费的时间比 LinkedList 要少一些。
这样的结论和预期的是不是不太相符?ArrayList 在添加元素的时候如果不涉及到扩容,性能在两种情况下(中间位置新增元素、尾部新增元素)比 LinkedList 好很多,只有头部新增元素的时候比 LinkedList 差,因为数组复制的原因。
当然了,如果涉及到数组扩容的话,ArrayList 的性能就没那么可观了,因为扩容的时候也要复制数组。
04、ArrayList 和 LinkedList 删除元素时究竟谁快?
1)ArrayList
ArrayList 删除元素的时候,有两种方式,一种是直接删除元素(remove(Object)),需要直先遍历数组,找到元素对应的索引;一种是按照索引删除元素(remove(int))。
public boolean remove( Object o )
{
final Object[] es = elementData;
final int size = this.size;
int i = 0;
found: { if ( o == null )
{
for (; i < size; i++ )
if ( es[i] == null )
break found;
} else {
for (; i < size; i++ )
if ( o.equals( es[i] ) )
break found;
} return(false); } fastRemove( es, i ); return(true);
}
public E remove( int index )
{
Objects.checkIndex( index, size ); final Object[] es = elementData;
@SuppressWarnings( "unchecked" ) E oldValue = (E) es[index];
fastRemove( es, index ); return(oldValue);
}
但从本质上讲,都是一样的,因为它们最后调用的都是 fastRemove(Object, int) 方法。
private void fastRemove( Object[] es, int i )
{
modCount++; final int newSize;
if ( (newSize = size - 1) > i )
System.arraycopy( es, i + 1, es, i, newSize - i );
es[size = newSize] = null;
}
从源码可以看得出,只要删除的不是最后一个元素,都需要数组重组。删除的元素位置越靠前,代价就越大。
2)LinkedList
LinkedList 删除元素的时候,有四种常用的方式:
- remove(int),删除指定位置上的元素
public E remove(int index) { checkElementIndex(index); return unlink(node(index));}
先检查索引,再调用 node(int) 方法( 前后半段遍历,和新增元素操作一样)找到节点 Node,然后调用 unlink(Node) 解除节点的前后引用,同时更新前节点的后引用和后节点的前引用:
E unlink( Node x )
{
/* assert x != null; */
final E element = x.item; final Node next = x.next;
final Node prev = x.prev; if ( prev == null )
{
first = next;
} else {
prev.next = next;
x.prev = null;
} if ( next == null )
{
last = prev;
} else {
next.prev = prev;
x.next = null;
} x.item = null; size--;
modCount++;
return(element);
}
- remove(Object),直接删除元素
public boolean remove( Object o )
{
if ( o == null )
{
for ( LinkedList.Node x = first; x != null; x = x.next )
{
if ( x.item == null )
{
unlink( x ); return(true);
}
}
} else {
for ( LinkedList.Node x = first; x != null; x = x.next )
{
if ( o.equals( x.item ) )
{
unlink( x ); return(true);
}
}
} return(false);
}
也是先前后半段遍历,找到要删除的元素后调用 unlink(Node)。
- removeFirst(),删除第一个节点
public E removeFirst()
{
final LinkedList.Node f = first;
if ( f == null )
throw new NoSuchElementException();
return(unlinkFirst( f ) );
}
private E unlinkFirst( LinkedList.Node f )
{
/* assert f == first && f != null; */
final E element = f.item;
final LinkedList.Node next = f.next;
f.item = null;
f.next = null; /* help GC */
first = next;
if ( next == null )
last = null;
else
next.prev = null;
size--;
modCount++;
return(element);
}
删除第一个节点就不需要遍历了,只需要把第二个节点更新为第一个节点即可。
- removeLast(),删除最后一个节点
删除最后一个节点和删除第一个节点类似,只需要把倒数第二个节点更新为最后一个节点即可。
可以看得出,LinkedList 在删除比较靠前和比较靠后的元素时,非常高效,但如果删除的是中间位置的元素,效率就比较低了。
这里就不再做代码测试了,感兴趣的小伙伴可以自己试试,结果和新增元素保持一致:
- 从集合头部删除元素时,ArrayList 花费的时间比 LinkedList 多很多;
- 从集合中间位置删除元素时,ArrayList 花费的时间比 LinkedList 少很多;
- 从集合尾部删除元素时,ArrayList 花费的时间比 LinkedList 少一点。
我本地的统计结果如下所示,小伙伴们可以作为参考:
ArrayList从集 合 头 部位置 除元 花费的时间380
LinkedList从集 合 头 部位置 除元 花费的时间4ArrayList从集 合 中 间位置 除元 花费的时间381LinkedList从集 合 中 间位置 除元 花费的时间5922ArrayList从集 合 尾 部位置 除元 花费的时间8LinkedList从集 合 尾 部位置 除元 花费的时间12
05、ArrayList 和 LinkedList 遍历元素时究竟谁快?
1)ArrayList
遍历 ArrayList 找到某个元素的话,通常有两种形式:
- get(int),根据索引找元素
public E get(int index) { Objects.checkIndex(index, size); return elementData(index);}
由于 ArrayList 是由数组实现的,所以根据索引找元素非常的快,一步到位。
- indexOf(Object),根据元素找索引
public int indexOf( Object o )
{
return(indexOfRange( o, 0, size ) );
}
int indexOfRange( Object o, int start, int end )
{
Object[] es = elementData; if ( o == null )
{
for ( int i = start; i < end; i++ )
{
if ( es[i] == null )
{
return(i);
}
}
} else {
for ( int i = start; i < end; i++ )
{
if ( o.equals( es[i] ) )
{
return(i);
}
}
} return(-1);
}
根据元素找索引的话,就需要遍历整个数组了,从头到尾依次找。
2)LinkedList
遍历 LinkedList 找到某个元素的话,通常也有两种形式:
- get(int),找指定位置上的元素
public E get(int index) { checkElementIndex(index); return node(index).item;}
既然需要调用 node(int) 方法,就意味着需要前后半段遍历了。
- indexOf(Object),找元素所在的位置
public int indexOf( Object o )
{
int index = 0;
if ( o == null )
{
for ( LinkedList.Node x = first; x != null; x = x.next )
{
if ( x.item == null )
return(index);
index++;
}
} else {
for ( LinkedList.Node x = first; x != null; x = x.next )
{
if ( o.equals( x.item ) )
return(index);
index++;
}
} return(-1);
}
需要遍历整个链表,和 ArrayList 的 indexOf() 类似。
那在我们对集合遍历的时候,通常有两种做法,一种是使用 for 循环,一种是使用迭代器(Iterator)。
如果使用的是 for 循环,可想而知 LinkedList 在 get 的时候性能会非常差,因为每一次外层的 for 循环,都要执行一次 node(int) 方法进行前后半段的遍历。
LinkedList.Node node( int index )
{
/* assert isElementIndex(index); */
if ( index < (size >> 1) )
{
LinkedList.Node x = first;
for ( int i = 0; i < index; i++ )
x = x.next;
return(x);
} else {
LinkedList.Node x = last;
for ( int i = size - 1; i > index; i-- )
x = x.prev;
return(x);
}
}
那如果使用的是迭代器呢?
LinkedList list = new LinkedList();
for ( Iterator it = list.iterator(); it.hasNext(); )
{
it.next();
}
迭代器只会调用一次 node(int) 方法,在执行 list.iterator() 的时候:先调用 AbstractSequentialList 类的 iterator() 方法,再调用 AbstractList 类的 listIterator() 方法,再调用 LinkedList 类的 listIterator(int) 方法,如下图所示。
最后返回的是 LinkedList 类的内部私有类 ListItr 对象:
public ListIterator listIterator( int index )
{
checkPositionIndex( index );
return(new LinkedList.ListItr( index ) );
}
private class ListItr implements ListIterator { private LinkedList.Node lastReturned; private LinkedList.Node next;
private int nextIndex;
private int expectedModCount = modCount;
ListItr( int index )
{
/* assert isPositionIndex(index); */
next = (index == size) ? null : node( index );
nextIndex = index;
} public boolean hasNext()
{
return(nextIndex < size);
}
public E next()
{
checkForComodification(); if ( !hasNext() )
throw new NoSuchElementException();
lastReturned = next;
next = next.next;
nextIndex++; return(lastReturned.item);
}
}
执行 ListItr 的构造方法时调用了一次 node(int) 方法,返回第一个节点。在此之后,迭代器就执行 hasNext() 判断有没有下一个,执行 next() 方法下一个节点。
由此,可以得出这样的结论:遍历 LinkedList 的时候,千万不要使用 for 循环,要使用迭代器。
也就是说,for 循环遍历的时候,ArrayList 花费的时间远小于 LinkedList;迭代器遍历的时候,两者性能差不多。
06、总结
花了两天时间,终于肝完了!相信看完这篇文章后,再有面试官问你 ArrayList 和 LinkedList 有什么区别的话,你一定会胸有成竹地和他扯上半小时。