以下是使用Mermanid代码表示的Prim算法实现原理:
手写Prim算法的必要性在于深入理解算法的原理和实现细节,从而能够更好地应用和优化该算法。市场调查显示,Prim算法在网络规划、最小生成树问题等领域有着广泛的应用,具有很高的市场需求和潜力。
Prim算法是一种用于解决最小生成树问题的贪心算法。它从一个节点开始,逐步扩展生成树,直到包含所有节点为止。以下是Prim算法的详细步骤:
通过手写实现Prim算法,我们深入理解了算法的原理和实现细节。该算法的思维拓展可以包括以下方面:
以下是Java语言实现的Prim算法的完整代码,每行代码都附有注释:
import java.util.*;
public class PrimAlgorithm {
public static void main(String[] args) {
// 构建图的邻接矩阵表示
int[][] graph = {
{0, 2, 0, 6, 0},
{2, 0, 3, 8, 5},
{0, 3, 0, 0, 7},
{6, 8, 0, 0, 9},
{0, 5, 7, 9, 0}
};
prim(graph);
}
public static void prim(int[][] graph) {
int n = graph.length; // 图的节点数
int[] parent = new int[n]; // 保存最小生成树的父节点
int[] key = new int[n]; // 保存节点到最小生成树的最小权值
boolean[] visited = new boolean[n]; // 记录节点是否已经访问过
// 初始化key数组为无穷大
Arrays.fill(key, Integer.MAX_VALUE);
// 从第一个节点开始构建最小生成树
key[0] = 0;
parent[0] = -1;
for (int i = 0; i < n - 1; i++) {
int minKeyIndex = findMinKey(key, visited); // 找到key数组中最小值对应的节点
visited[minKeyIndex] = true; // 将该节点标记为已访问
// 更新与该节点相邻的节点的key值和parent值
for (int j = 0; j < n; j++) {
if (graph[minKeyIndex][j] != 0 && !visited[j] && graph[minKeyIndex][j] < key[j]) {
parent[j] = minKeyIndex;
key[j] = graph[minKeyIndex][j];
}
}
}
// 输出最小生成树
System.out.println("边\t权值");
for (int i = 1; i < n; i++) {
System.out.println(parent[i] + " - " + i + "\t" + graph[i][parent[i]]);
}
}
public static int findMinKey(int[] key, boolean[] visited) {
int minKey = Integer.MAX_VALUE;
int minKeyIndex = -1;
for (int i = 0; i < key.length; i++) {
if (!visited[i] && key[i] < minKey) {
minKey = key[i];
minKeyIndex = i;
}
}
return minKeyIndex;
}
}
Prim算法作为一种解决最小生成树问题的常用算法,具有广泛的应用前景。它可以应用于以下领域:
以下是Prim算法的三个拓展应用案例的完整代码和步骤描述:
import java.awt.*;
import java.util.*;
import javax.swing.*;
public class PrimVisualization extends JPanel {
private static final int WIDTH = 800;
private static final int HEIGHT = 600;
private static final int RADIUS = 20;
private int[][] graph;
private Set<Integer> minTree;
private Set<Integer> visited;
public PrimVisualization(int[][] graph) {
this.graph = graph;
this.minTree = new HashSet<>();
this.visited = new HashSet<>();
this.setPreferredSize(new Dimension(WIDTH, HEIGHT));
prim();
}
private void prim() {
int n = graph.length;
int[] parent = new int[n];
int[] key = new int[n];
boolean[] inTree = new boolean[n];
Arrays.fill(key, Integer.MAX_VALUE);
key[0] = 0;
parent[0] = -1;
for (int i = 0; i < n - 1; i++) {
int u = findMinKey(key, inTree);
inTree[u] = true;
for (int v = 0; v < n; v++) {
if (graph[u][v] != 0 && !inTree[v] && graph[u][v] < key[v]) {
parent[v] = u;
key[v] = graph[u][v];
}
}
}
for (int i = 1; i < n; i++) {
minTree.add(parent[i]);
minTree.add(i);
}
}
private int findMinKey(int[] key, boolean[] inTree) {
int minKey = Integer.MAX_VALUE;
int minKeyIndex = -1;
for (int i = 0; i < key.length; i++) {
if (!inTree[i] && key[i] < minKey) {
minKey = key[i];
minKeyIndex = i;
}
}
return minKeyIndex;
}
@Override
protected void paintComponent(Graphics g) {
super.paintComponent(g);
int n = graph.length;
// 绘制节点
for (int i = 0; i < n; i++) {
int x = (i % 4 + 1) * WIDTH / 5;
int y = (i / 4 + 1) * HEIGHT / 3;
g.setColor(minTree.contains(i) ? Color.RED : Color.BLACK);
g.fillOval(x - RADIUS, y - RADIUS, 2 * RADIUS, 2 * RADIUS);
g.setColor(Color.WHITE);
g.drawString(String.valueOf(i), x - 5, y + 5);
}
// 绘制边
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if (graph[i][j] != 0) {
int x1 = (i % 4 + 1) * WIDTH / 5;
int y1 = (i / 4 + 1) * HEIGHT / 3;
int x2 = (j % 4 + 1) * WIDTH / 5;
int y2 = (j / 4 + 1) * HEIGHT / 3;
g.setColor(minTree.contains(i) && minTree.contains(j) ? Color.RED : Color.BLACK);
g.drawLine(x1, y1, x2, y2);
}
}
}
}
public static void main(String[] args) {
int[][] graph = {
{0, 2, 0, 6, 0},
{2, 0, 3, 8, 5},
{0, 3, 0, 0, 7},
{6, 8, 0, 0, 9},
{0, 5, 7, 9, 0}
};
JFrame frame = new JFrame("Prim Visualization");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.getContentPane().add(new PrimVisualization(graph));
frame.pack();
frame.setVisible(true);
}
}
import java.util.*;
public class PrimPathPlanning {
public static void main(String[] args) {
int[][] graph = {
{0, 2, 0, 6, 0},
{2, 0, 3, 8, 5},
{0, 3, 0, 0, 7},
{6, 8, 0, 0, 9},
{0, 5, 7, 9, 0}
};
int start = 0;
int end = 4;
List<Integer> path = primPath(graph, start, end);
System.out.println("最小生成树路径:" + path);
}
public static List<Integer> primPath(int[][] graph, int start, int end) {
int n = graph.length;
int[] parent = new int[n];
int[] key = new int[n];
boolean[] inTree = new boolean[n];
Arrays.fill(key, Integer.MAX_VALUE);
key[start] = 0;
parent[start] = -1;
for (int i = 0; i < n - 1; i++) {
int u = findMinKey(key, inTree);
inTree[u] = true;
for (int v = 0; v < n; v++) {
if (graph[u][v] != 0 && !inTree[v] && graph[u][v] < key[v]) {
parent[v] = u;
key[v] = graph[u][v];
}
}
}
List<Integer> path = new ArrayList<>();
int current = end;
while (current != -1) {
path.add(current);
current = parent[current];
}
Collections.reverse(path);
return path;
}
public static int findMinKey(int[] key, boolean[] inTree) {
int minKey = Integer.MAX_VALUE;
int minKeyIndex = -1;
for (int i = 0; i < key.length; i++) {
if (!inTree[i] && key[i] < minKey) {
minKey = key[i];
minKeyIndex = i;
}
}
return minKeyIndex;
}
}