一:GAN的简介
生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。原始 GAN 理论中,并不要求 G 和 D 都是神经网络,只需要是能拟合相应生成和判别的函数即可。但实用中一般均使用深度神经网络作为 G 和 D 。一个优秀的GAN应用需要有良好的训练方法,否则可能由于神经网络模型的自由性而导致输出不理想。
二:在此过程中遇到问题:
在运行代码时可能会出现以下报错:
ModuleNotFoundError:
No module named 'tensorflow.examples.tutorials'
解决办法:
1.打开我的电脑---->查找…\Python3\Lib\site-packages---->找到tensorflow, tensorflow_core, ensorflow_estimator
2.打开tensorflow_core\examples文件夹查看是否有saved_model和tutorials文件。
3.如果文件夹下只有saved_model这个文件,没有tutorials。打开github的tensorflow主页下载缺失的文件
网址为:https://github.com/tensorflow/tensorflow。
4.在tensorflowmaster\tensorflow\examples\这里找到了tutorials文件夹,把tutorials整个文件夹拷贝到上文中提到的…\Python3\Lib\site-packages\tensorflow_core\examples\
三、MNIST生成:
import tensorflow as tf
import numpy as np
import os
from tensorflow.examples.tutorials.mnist import input_data
from matplotlib import pyplot as plt
BATCH_SIZE = 64
UNITS_SIZE = 128
LEARNING_RATE = 0.001
EPOCH = 300
SMOOTH = 0.1
mnist = input_data.read_data_sets('/mnist_data/', one_hot=True)
# 生成模型
def generatorModel(noise_img, units_size, out_size, alpha=0.01):
with tf.variable_scope('generator'):
FC = tf.layers.dense(noise_img, units_size)
reLu = tf.nn.leaky_relu(FC, alpha)
drop = tf.layers.dropout(reLu, rate=0.2)
logits = tf.layers.dense(drop, out_size)
outputs = tf.tanh(logits)
return logits, outputs
def discriminatorModel(images, units_size, alpha=0.01, reuse=False):
with tf.variable_scope('discriminator', reuse=reuse):
FC = tf.layers.dense(images, units_size)
reLu = tf.nn.leaky_relu(FC, alpha)
logits = tf.layers.dense(reLu, 1)
outputs = tf.sigmoid(logits)
return logits, outputs
# 损失函数
def loss_function(real_logits, fake_logits, smooth):
G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=fake_logits,
labels=tf.ones_like(fake_logits)*(1-smooth)))
fake_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=fake_logits,
labels=tf.zeros_like(fake_logits)))
real_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=real_logits,
labels=tf.ones_like(real_logits)*(1-smooth)))
D_loss = tf.add(fake_loss, real_loss)
return G_loss, fake_loss, real_loss, D_loss
# 优化器
def optimizer(G_loss, D_loss, learning_rate):
train_var = tf.trainable_variables()
G_var = [var for var in train_var if var.name.startswith('generator')]
D_var = [var for var in train_var if var.name.startswith('discriminator')]
# 因为GAN中一共训练了两个网络,所以分别对G和D进行优化
G_optimizer = tf.train.AdamOptimizer(learning_rate).minimize(G_loss, var_list=G_var)
D_optimizer = tf.train.AdamOptimizer(learning_rate).minimize(D_loss, var_list=D_var)
return G_optimizer, D_optimizer
# 训练
def train(mnist):
image_size = mnist.train.images[0].shape[0]
real_images = tf.placeholder(tf.float32, [None, image_size])
fake_images = tf.placeholder(tf.float32, [None, image_size])
#调用生成模型生成图像G_output
G_logits, G_output = generatorModel(fake_images, UNITS_SIZE, image_size)
# D对真实图像的判别
real_logits, real_output = discriminatorModel(real_images, UNITS_SIZE)
# D对G生成图像的判别
fake_logits, fake_output = discriminatorModel(G_output, UNITS_SIZE, reuse=True)
# 计算损失函数
G_loss, real_loss, fake_loss, D_loss = loss_function(real_logits, fake_logits, SMOOTH)
# 优化
G_optimizer, D_optimizer = optimizer(G_loss, D_loss, LEARNING_RATE)
saver = tf.train.Saver()
step = 0
with tf.Session() as session:
session.run(tf.global_variables_initializer())
for epoch in range(EPOCH):
for batch_i in range(mnist.train.num_examples // BATCH_SIZE):
batch_image, _ = mnist.train.next_batch(BATCH_SIZE)
# 对图像像素进行scale,tanh的输出结果为(-1,1)
batch_image = batch_image * 2 -1
# 生成模型的输入噪声
noise_image = np.random.uniform(-1, 1, size=(BATCH_SIZE, image_size))
session.run(G_optimizer, feed_dict={fake_images:noise_image})
session.run(D_optimizer, feed_dict={real_images: batch_image, fake_images: noise_image})
step = step + 1
# 判别器D的损失
loss_D = session.run(D_loss, feed_dict={real_images: batch_image, fake_images:noise_image})
# D对真实图片
loss_real =session.run(real_loss, feed_dict={real_images: batch_image, fake_images: noise_image})
# D对生成图片
loss_fake = session.run(fake_loss, feed_dict={real_images: batch_image, fake_images: noise_image})
# 生成模型G的损失
loss_G = session.run(G_loss, feed_dict={fake_images: noise_image})
print('epoch:', epoch, 'loss_D:', loss_D, ' loss_real', loss_real, ' loss_fake', loss_fake, ' loss_G', loss_G)
model_path = os.getcwd() + os.sep + "mnist.model"
saver.save(session, model_path, global_step=step)
def main(argv=None):
train(mnist)
if __name__ == '__main__':
tf.app.run()
import tensorflow as tf
import numpy as np
from matplotlib import pyplot as plt
import pickle
import mnist_GAN
UNITS_SIZE = mnist_GAN.UNITS_SIZE
def generatorImage(image_size):
sample_images = tf.placeholder(tf.float32, [None, image_size])
G_logits, G_output = mnist_GAN.generatorModel(sample_images, UNITS_SIZE, image_size)
saver = tf.train.Saver()
with tf.Session() as session:
session.run(tf.global_variables_initializer())
saver.restore(session, tf.train.latest_checkpoint('.'))
sample_noise = np.random.uniform(-1, 1, size=(25, image_size))
samples = session.run(G_output, feed_dict={sample_images:sample_noise})
with open('samples.pkl', 'wb') as f:
pickle.dump(samples, f)
def show():
with open('samples.pkl', 'rb') as f:
samples = pickle.load(f)
fig, axes = plt.subplots(figsize=(7, 7), nrows=5, ncols=5, sharey=True, sharex=True)
for ax, image in zip(axes.flatten(), samples):
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
ax.imshow(image.reshape((28, 28)), cmap='Greys_r')
plt.show()
def main(argv=None):
image_size = mnist_GAN.mnist.train.images[0].shape[0]
generatorImage(image_size)
show()
if __name__ == '__main__':
tf.app.run()