向前logistic回归与向后筛选出一样的变量_生存分析之Cox回归

转自个人微信公众号【Memo_Cleon】的统计学习笔记:生存分析之Cox回归

随访资料的生存分析是一个很大的题目。

从分析的因素上看,有单因素分析和多因素分析。正如“连续资料的单因素分析常用t检验、方差分析,对应的多因素分析是多重线性回归”、“分类资料的单因素分析方法卡方分析,对应的多因素分析有logistic回归”一样,生存分析的常用单因素(或少数因素)的分析有Life Tables法、Kaplan-Meier法,对应的多因素模型则常用Cox回归模型(Cox风险比例模型)。从采取的分析方法上看,生存分析有非参数法(如Wilcoxon法、Log-rank法)、参数法(如Weibull回归、lognormal回归等)和半参数分析(Cox回归)。

Cox回归要求满足比例风险假定(proportional-hazards assumption)的前提条件。所谓比例风险假定,就是假定风险比(HR,Hazard Ratio)不随时间t变化而变化。

在进行生存分析前,你最好对以下的一些概念及其意义有所了解:起始事件、失效事件(Failure Event)/终点事件(Endpoint Event)、生存时间(Survival Time)/失效时间(Failure Time)、中位生存时间(Median Survival Time)、平均生存时间(Mean Survival Time)、删失值/截尾值(censored values)、生存概率(Survival Probability)、生存率(Survival Rate)/积累生存概率/生存函数/积累生存函数(Cumulative Survival Function)、风险函数(Hazard Function)、累积风险函数……风险函数h(t)=概率密度函数f(t)/生存函数S(t),概率密度函数f(t)为累积分布函数F(t)的导数,而F(t)=1-S(t)。可参见《生存分析》。

模型结构与参数释义可参见颜虹等主编的《医学统计学》,如下。对此不感兴趣而只关心操作和结果解读的,可直接越过。

向前logistic回归与向后筛选出一样的变量_生存分析之Cox回归_第1张图片

当前笔记用STATA演示Cox回归操作。STATA在进行Cox回归分析前首先需要声明生存时间变量,另外比例风险假定是进行Cox回归的前提条件,需要进行考察和检验。

示例(陈启光等.医学统计学第3版):探讨某肿瘤的预后,某研究机构收集了41例患者的生存时间(月份)、生存结构及影响因素。影响因素包括性别、年龄、病理分级、是否复发、PD-L1分子。变量赋值与资料如下:

向前logistic回归与向后筛选出一样的变量_生存分析之Cox回归_第2张图片

向前logistic回归与向后筛选出一样的变量_生存分析之Cox回归_第3张图片

【1】数据录入:

【2】声明时

你可能感兴趣的:(向前logistic回归与向后筛选出一样的变量_生存分析之Cox回归)