题目:
班级组织传球活动,男女同学随机排成m行n列队伍,第一列中的任意一个男同学都可以作为传球的起点,要求最终将球传到最后一列的任意一个男同学手里,求所有能够完成任务的传球路线中的最优路线(传球次数最少的路线)的传球次数。
传球规则:
1.男同学只能将球传给男同学,不能传给女同学。
2.球只能传给身边前后左右相邻的同学。
3.如果游戏不能完成,返回-1。
说明:
1.传球次数最少的路线为最优路线。
2.最优路线可能不唯一,不同最优路线都为最少传球次数。
解答要求:
时间限制:C/C++100ms其他语言: 200ms内存限制: C/C++256MB,其他语言: 512MB
输入:
班级同学随机排成的m行n列队伍,1代表男同学,0代表女同学。
输入第一行包含两个用空格分开的整数m[1,30]和n [1,30],表示m行n列的队伍;
接下来是m行每行包含n个用空格分开的整数1或0。
输出:
最优路线的传球次数(最少传球次数)
样例
输入:
4 4
1 1 1 0
1 1 1 0
0 0 1 0
0 1 1 1
输出:
5
//DFS
import java.util.Scanner;
public class Huawei {
private static int minPasses = Integer.MAX_VALUE;
private static int[] dx = {-1, 1, 0, 0};
private static int[] dy = {0, 0, -1, 1};
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int m = scanner.nextInt();
int n = scanner.nextInt();
int[][] grid = new int[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
grid[i][j] = scanner.nextInt();
}
}
for (int i = 0; i < m; i++) {
if (grid[i][0] == 1) {
dfs(i, 0, 0, m, n, grid);
}
}
if (minPasses == Integer.MAX_VALUE) {
System.out.println(-1);
} else {
System.out.println(minPasses);
}
}
private static void dfs(int x, int y, int passes, int m, int n, int[][] grid) {
if (y == n - 1) {
minPasses = Math.min(minPasses, passes);
return;
}
for (int i = 0; i < 4; i++) {
int nx = x + dx[i];
int ny = y + dy[i];
if (nx >= 0 && nx < m && ny >= 0 && ny < n && grid[nx][ny] == 1) {
grid[x][y] = 0;
dfs(nx, ny, passes + 1, m, n, grid);
grid[x][y] = 1;
}
}
}
}
//BFS,代码来源万诺coding
import java.io.*;
import java.util.Deque;
import java.util.LinkedList;
import java.util.StringTokenizer;
public class Main {
private static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(InputStream stream){
br = new BufferedReader(new InputStreamReader(stream), 32768);
st = null;
}
String next() {
while (st == null || !st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
}
public static void main(String[] args) {
new Main().solve();
}
int m,n;
int[][] grid;
void solve() {
PrintWriter pwin = new PrintWriter(new OutputStreamWriter(System.out));
FastScanner fsc = new FastScanner(System.in);
m = fsc.nextInt();;
n = fsc.nextInt();
grid = new int[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
grid[i][j] = fsc.nextInt();
}
}
int[][] dirs = {{0,1},{1,0},{0,-1},{-1,0}};
int res = 10000001;
for (int i = 0; i < m; i++) {
if (grid[i][0] == 1) {
Deque<int[]> dq = new LinkedList<>();
dq.add(new int[]{0,i,0});
boolean[][] used = new boolean[m][n];
used[i][0] = true;
while (!dq.isEmpty()) {
int[] a = dq.poll();
int d = a[0], x = a[1], y = a[2];
if (y == n-1) {
res = Math.min(res, d);
}
for (int[] dir : dirs) {
int nx = x + dir[0], ny = y + dir[1];
if (nx < 0 || ny < 0 || nx >= m || ny >= n || used[nx][ny] || grid[nx][ny] != 1) continue;
used[nx][ny] = true;
dq.add(new int[]{d+1, nx,ny});
}
}
}
}
if (res != 10000001) pwin.println(res);
else pwin.println(-1);
pwin.flush();
}
}