singleflight源码分析与缓存雪崩的应用

一、缓存雪崩的应用

背景:

我们在重启pod的时候,此时会导致gocache中重启,然后缓存同时大批量失效。如果此时并发比较高,会有很多goroutine,去同时访问redis。
singleflight源码分析与缓存雪崩的应用_第1张图片
加单飞,将一组相同的请求合并成一个请求,实际上只会去请求一次,然后对所有的请求返回相同的结果

singleflight源码分析与缓存雪崩的应用_第2张图片

singlefight实验:

singlefight_test.go
需要重新从redis获取数据存取到 gocache。

func BenchmarkUse(b *testing.B) {
    ctx := context.Background()
    wordTouchRedisClient.Set(ctx, "k", "v", time.Second*600)

    goCache := cache.New(time.Second*60, time.Second*60)

    //sg := singleflight.Group{}
    for i := 0; i < b.N; i++ {
       _, ok := goCache.Get("k")
       if !ok {
          go func() {
             //_, _, _ = sg.Do("k", func() (interface{}, error) {
             v, _ := wordTouchRedisClient.Get(ctx, "k").Result()
             goCache.Set("k", v, time.Second*60)
             //return v, nil
             //})
          }()
       }
    }
}

BenchmarkUse-8              94518             20173 ns/op

此时引入单飞


func BenchmarkUse(b *testing.B) {
    ctx := context.Background()
    wordTouchRedisClient.Set(ctx, "k", "v", time.Second*600)

    goCache := cache.New(time.Second*60, time.Second*60)

    sg := singleflight.Group{}
    for i := 0; i < b.N; i++ {
       _, ok := goCache.Get("k")
       if !ok {
          go func() {
             _, _, _ = sg.Do("k", func() (interface{}, error) {
                v, _ := wordTouchRedisClient.Get(ctx, "k").Result()
                goCache.Set("k", v, time.Second*60)
                return v, nil
             })
          }()
       }
    }
}

BenchmarkUse-8           21307608                46.96 ns/op
BenchmarkUse-2           25675206                45.37 ns/op

风险:

  1. 如果一个报错, 同一批都报错

二、源码分析

源码注释

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package singleflight provides a duplicate function call suppression
// mechanism.
// singleflight包提供了重复函数调用抑制机制。
package singleflight // import "golang.org/x/sync/singleflight"

import (
    "bytes"
    "errors"
    "fmt"
    "runtime"
    "runtime/debug"
    "sync"
)

// errGoexit indicates the runtime.Goexit was called in
// the user given function.
// errGoexit 表示 runtime.Goexit 被用户的函数调用了
var errGoexit = errors.New("runtime.Goexit was called")

// A panicError is an arbitrary value recovered from a panic
// panicError 是从panic中 恢复的任意值
// with the stack trace during the execution of given function.
// 执行给定函数期间的堆栈跟踪
type panicError struct {
    value interface{}
    stack []byte
}

// Error implements error interface.
// Error 实现错误接口
func (p *panicError) Error() string {
    return fmt.Sprintf("%v\n\n%s", p.value, p.stack)
}

func newPanicError(v interface{}) error {
    stack := debug.Stack()

    // The first line of the stack trace is of the form "goroutine N [status]:"
    // 堆栈跟踪的第一行的形式为“goroutine N [status]:”
    // but by the time the panic reaches Do the goroutine may no longer exist
    // 但当panic达到 Do 时,goroutine 可能不再存在
    // and its status will have changed. Trim out the misleading line.
    // 并且它的状态将会改变。修剪掉误导性的线条。
    if line := bytes.IndexByte(stack[:], '\n'); line >= 0 {
       stack = stack[line+1:]
    }
    return &panicError{value: v, stack: stack}
}

// call is an in-flight or completed singleflight.Do call
// call 是正在进行的或已完成的 singleflight.Do() 调用
type call struct {
    wg sync.WaitGroup

    // These fields are written once before the WaitGroup is done
    // 这些字段在 WaitGroup 完成之前写入一次
    // and are only read after the WaitGroup is done.
    // 并且仅在 WaitGroup 完成后才读取。
    val interface{}
    err error

    // These fields are read and written with the singleflight
    // 这些字段是用 singleflight mutex  读写的
    // mutex held before the WaitGroup is done, and are read but
    //  在 WaitGroup完成前。
    // not written after the WaitGroup is done.
    // 并且 只读不写,在WaitGroup完成后。
    dups  int
    chans []chan<- Result
}

// Group represents a class of work and forms a namespace in
// Group 代表一个工作类,并在其中形成一个命名空间
// which units of work can be executed with duplicate suppression.
// 哪些工作单元可以通过重复抑制来执行。
type Group struct {
    mu sync.Mutex       // protects m 用来保护m,并发安全
    m  map[string]*call // lazily initialized  延迟初始化
}

// Result holds the results of Do, so they can be passed
// Result保存了Do的结果,因此可以传递
// on a channel.
// 在通道上
type Result struct {
    Val    interface{}
    Err    error
    Shared bool
}

// Do executes and returns the results of the given function, 
// Do 执行并返回给定函数的结果
// making sure that only one execution is in-flight for a given key at a time. 
// 确保在某一时刻对于给定的键只有一次正在执行
// If a duplicate comes in, the duplicate caller waits for the original
// 如果有重复的调用者进入,则重复的调用者将等待最初者
// to complete and receives the same results.
// 完成并收到相同的结果。
// The return value shared indicates whether v was given to multiple callers.
// 返回值shared表示v是否被给予多个调用者。
func (g *Group) Do(key string, fn func() (interface{}, error)) (v interface{}, err error, shared bool) {
    g.mu.Lock()
    if g.m == nil {
       g.m = make(map[string]*call)
    }
    if c, ok := g.m[key]; ok {
       c.dups++
       g.mu.Unlock()
       c.wg.Wait()

       if e, ok := c.err.(*panicError); ok {
          panic(e)
       } else if c.err == errGoexit {
          runtime.Goexit()
       }
       return c.val, c.err, true
    }
    c := new(call)
    c.wg.Add(1)
    g.m[key] = c
    g.mu.Unlock()

    g.doCall(c, key, fn)
    return c.val, c.err, c.dups > 0
}

// DoChan is like Do but returns a channel that will receive the
// results when they are ready.
// DoChan 与 Do 类似,但返回一个chanel通道 接收准备好后的结果。
//
// The returned channel will not be closed.
// 返回的channel通道不会被关闭。
func (g *Group) DoChan(key string, fn func() (interface{}, error)) <-chan Result {
    ch := make(chan Result, 1)
    g.mu.Lock()
    if g.m == nil {
       g.m = make(map[string]*call)
    }
    if c, ok := g.m[key]; ok {
       c.dups++
       c.chans = append(c.chans, ch)
       g.mu.Unlock()
       return ch
    }
    c := &call{chans: []chan<- Result{ch}}
    c.wg.Add(1)
    g.m[key] = c
    g.mu.Unlock()

    go g.doCall(c, key, fn)

    return ch
}

// doCall handles the single call for a key.
// doCall 处理对key的单个调用。
func (g *Group) doCall(c *call, key string, fn func() (interface{}, error)) {
    normalReturn := false
    recovered := false

    // use double-defer to distinguish panic from runtime.Goexit,
    // 使用双重延迟 来区分panic和runtime.Goexit,
    // more details see https://golang.org/cl/134395
    // 更多详情参见 https://golang.org/cl/134395
    defer func() {
       // the given function invoked runtime.Goexit
       // 调用给定函数runtime.Goexit
       if !normalReturn && !recovered {
          c.err = errGoexit
       }

       g.mu.Lock()
       defer g.mu.Unlock()
       c.wg.Done()
       if g.m[key] == c {
          delete(g.m, key)
       }

       if e, ok := c.err.(*panicError); ok {
          // In order to prevent the waiting channels from being blocked forever,
          // 为了防止等待通道永远被阻塞,
          // needs to ensure that this panic cannot be recovered.
          // 需要确保这种panic恐慌无法恢复。
          if len(c.chans) > 0 {
             go panic(e)
             select {} // Keep this goroutine around so that it will appear in the crash dump.
                       // 保留此 goroutine,以便它出现在故障转储中。  
          } else {
             panic(e)
          }
       } else if c.err == errGoexit {
          // Already in the process of goexit, no need to call again
          // 已经在goexit过程中,无需再次调用
       } else {
          // Normal return
          // 正常返回
          for _, ch := range c.chans {
             ch <- Result{c.val, c.err, c.dups > 0}
          }
       }
    }()

    func() {
       defer func() {
          if !normalReturn {
             // Ideally, we would wait to take a stack trace until we've determined
             // 理想情况下,我们会等待获取堆栈跟踪,直到我们确定
             // whether this is a panic or a runtime.Goexit.
             // 这是恐慌还是runtime.Goexit。
             //
             // Unfortunately, the only way we can distinguish the two is to see
             // 不幸的是,我们区分两者的唯一方法就是看
             // whether the recover stopped the goroutine from terminating, and by
             // 恢复是否阻止 goroutine 终止,并且通过
             // the time we know that, the part of the stack trace relevant to the
             // 当我们知道时,堆栈跟踪中与
             // panic has been discarded.
             // 恐慌已被丢弃。
             if r := recover(); r != nil {
                c.err = newPanicError(r)
             }
          }
       }()

       c.val, c.err = fn()
       normalReturn = true
    }()

    if !normalReturn {
       recovered = true
    }
}

// Forget tells the singleflight to forget about a key.  Future calls
// Forget 告诉 singleflight 忘记某个键。未来的calls调用
// to Do for this key will call the function rather than waiting for
// 为此键执行的操作将调用该函数而不是等待
// an earlier call to complete.
// 较早的调用完成。
func (g *Group) Forget(key string) {
    g.mu.Lock()
    delete(g.m, key)
    g.mu.Unlock()
}

并发情况下的goroutine执行情况

func BenchmarkUse(b *testing.B) {
    ctx := context.Background()
    wordTouchRedisClient.Set(ctx, "k", "v", time.Second*600)

    goCache := cache.New(time.Second*60, time.Second*60)

    sg := singleflight.Group{}
    for i := 0; i < b.N; i++ {
       _, ok := goCache.Get("k")
       if !ok {
          go func() {
             _, _, _ = sg.Do("k", func() (interface{}, error) {
                v, _ := wordTouchRedisClient.Get(ctx, "k").Result()
                goCache.Set("k", v, time.Second*60)
                return v, nil
             })
          }()
       }
    }
}

如图表展示

就是在第一个 子goroutine的从开始到结束,启动的 其余子goroutine,都和第一个goroutine,都拥有相同的call,为同一个group。然后返回同样的结果。
第一个子goroutine,结束完,就删掉key,然后在下面的goroutine,为新的一组。

singleflight源码分析与缓存雪崩的应用_第3张图片

你可能感兴趣的:(go)