目录
1. 什么是Debezium
2. Debezium常规使用架构
3. 部署Debezium
3.1. AWS EKS部署Kafka Connector
4. Flink 消费Debezium 类型消息
5. 写入Hudi表
5.1. 依赖包问题
5.2. Flink 版本问题
6. Flink消费Debezium与写入Hudi测试
7. 验证hudi表
8. 总结
References
Debezium是一个开源的分布式平台,用于捕捉变化数据(change data capture)的场景。它可以捕捉数据库中的事件变化(例如表的增、删、改等),并将其转为事件流,使得下游应用可以看到这些变化,并作出指定响应。
根据Debezium官网[1]提供的常规使用的架构图:
可以看到,在对RMSDB数据源做数据摄入时,使用的是Kafka Connect。Source Connector从数据库中获取记录并发送到Kafka;Sink Connectors将记录从Kafka Topic 传播到其他系统中。
上图中分别对MySQL 与 PostgreSQL部署了connector:
另一种方式是仅部署Debezium Server(不带Kakfa),架构如下图所示:
此方式使用的是Debezium自带的Source Connector。数据库端的事件会被序列化为JSON或Apache Avro格式,然后发送到其他消息系统如Kinesis、Apache Pulsar等。
在此次部署中,我们使用的均为AWS 资源,架构图如下:
此架构说明:
此处会省去创建AWS RDS、EKS、MSK 以及 EMR的过程,主要介绍搭建过程中的具体使用到的方法。
3.1.1. 安装Operator Framework 与 Strimzi Apache Kafka Operator
先安装Operator Framework[2],它是一个用来管理k8s原生应用(Operator)的开源工具。然后安装Kafka可以使用Strimzi Apache Kafka Operator[3]。
安装最新版 operator-framework[4],当前版本为 0.18.1:
kubectl apply -f https://github.com/operator-framework/operator-lifecycle-manager/releases/download/v0.18.1/crds.yaml
kubectl apply -f https://github.com/operator-framework/operator-lifecycle-manager/releases/download/v0.18.1/olm.yaml
|
安装Strimzi Apache Kafka Operator:
kubectl apply -f https://operatorhub.io/install/strimzi-kafka-operator.yaml
$ kubectl get csv -n operators NAME DISPLAY VERSION REPLACES PHASE strimzi-cluster-operator.v0.23.0 Strimzi 0.23.0 strimzi-cluster-operator.v0.22.1 Succeeded
|
3.1.2. 打包Debezium的MySQL Kafka Connector
下面部署Debezium 的 MySQL Kafka Connector。
源端数据库为MySQL,所以下载 debezium-connector-mysql,版本为1.5.0.Final:
wget https://repo1.maven.org/maven2/io/debezium/debezium-connector-mysql/1.5.0.Final /debezium-connector-mysql-1.5.0.Final-plugin.tar.gz
tar -zxvf debezium-connector-mysql-1.5.0.Final-plugin.tar.gz
|
然后我们build一个自定义的debezium-connector-mysql Docker镜像:
创建Dockerfile:
FROM strimzi/kafka:0.20.1-kafka-2.6.0 USER root:root RUN mkdir -p /opt/kafka/plugins/debezium COPY ./debezium-connector-mysql/ /opt/kafka/plugins/debezium/ USER 1001 |
Bulid镜像并推送:
# 登录aws ecr > aws ecr get-login --no-include-email
# Build 镜像 > sudo docker build . -t {ECR_Repository}/connect-debezium
# 推送到ECR > sudo docker push {ECR_Repository}/connect-debezium
|
3.1.3. 部署 Debezium MySQL Connector
$ cat debezium-mysql-connector.yaml apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect metadata: name: debezium-connector namespace: kafka # annotations: # # use-connector-resources configures this KafkaConnect # # to use KafkaConnector resources to avoid # # needing to call the Connect REST API directly # strimzi.io/use-connector-resources: "true" spec: version: 2.8.0 replicas: 1 bootstrapServers: xxxx image: xxxxxx.dkr.ecr.cn-north-1.amazonaws.com.cn/connect-debezium:latest config: group.id: connect-cluster offset.storage.topic: connect-cluster-offsets config.storage.topic: connect-cluster-configs status.storage.topic: connect-cluster-status # -1 means it will use the default replication factor configured in the broker config.storage.replication.factor: -1 offset.storage.replication.factor: -1 status.storage.replication.factor: -1
$ kubectl apply -f debezium-mysql-connector.yaml
$ kubectl get pods -n kafka NAME READY STATUS RESTARTS AGE debezium-connector-connect-69c98cc784-kqvww 1/1 Running 0 5m44s
|
替换其中的bootstrapServers为AWS MSK bootstrapServers;image为3.1.2 步骤中打包的镜像地址。
使用本地代理访问Kafka Connect 服务,并验证可用 Connectors:
$ kubectl port-forward service/debezium-connector-connect-api 8083:8083 -n kafka
$ curl localhost:8083/connector-plugins [{ "class": "io.debezium.connector.mysql.MySqlConnector", "type": "source", "version": "1.5.0.Final" }, { "class": "org.apache.kafka.connect.file.FileStreamSinkConnector", "type": "sink", "version": "2.6.0" } … ]
|
编写 MySQL Connector 配置文件:
$ cat mysql-connector-tang.json { "name": "mysql-connector", "config": { "connector.class": "io.debezium.connector.mysql.MySqlConnector", "tasks.max": "1", "database.hostname": "xxxxx", "database.port": "3306", "database.user": "xxxx", "database.password": "xxxx", "database.server.id": "184055", "database.server.name": "mysql-tang", "database.include.list": "tang ", "database.history.kafka.bootstrap.servers": "xxxxx", "database.history.kafka.topic": " changes.tang" } } |
将配置推送到 Kafka Connector:
$ cat mysql-connector.json | curl -i -X POST -H "Accept:application/json" -H "Content-Type:application/json" localhost:8083/connectors/ -d @- HTTP/1.1 201 Created Date: Fri, 21 May 2021 11:00:25 GMT Location: http://localhost:8083/connectors/mysql-connector-tang Content-Type: application/json Content-Length: 733 Server: Jetty(9.4.24.v20191120)
# 验证已经创建connector $ curl localhost:8083/connectors/ ["mysql-connector-tang"]
|
3.1.4. 验证
部署完成后,在AWS RDS MySQL 中创建库与测试表,并写入测试数据。此时在AWS MSK中未发现对应 events生成。
查看connector 的pod 日志:
$ kubectl logs debezium-connector-connect-69c98cc784-kqvww -n kafka …. io.debezium.DebeziumException: The MySQL server is not configured to use a ROW binlog_format, which is required for this connector to work properly. Change the MySQL configuration to use a binlog_format=ROW and restart the connector. at io.debezium.connector.mysql.MySqlConnectorTask.validateBinlogConfiguration(MySqlConnectorTask.java:203) at io.debezium.connector.mysql.MySqlConnectorTask.start(MySqlConnectorTask.java:85) at io.debezium.connector.common.BaseSourceTask.start(BaseSourceTask.java:130) |
可以看到MySQLConnector需要MySQL server 配置 binlog_format 为 ROW。
修改此配置后,再次通过进行kafka-console-consumer.sh 进行验证,即可看到测试数据库中的所有事件:
$ ./kafka-console-consumer.sh --bootstrap-server xxxx --topic schema-changes.inventory --from-beginning … { "source" : { "server" : "mysql-tang" }, "position" : { "ts_sec" : 1621585297, "file" : "mysql-bin-changelog.000015", "pos" : 511, "snapshot" : true }, "databaseName" : "inventory", "ddl" : "CREATE DATABASE `inventory` CHARSET latin1 COLLATE latin1_swedish_ci", "tableChanges" : [ ] } … { "source" : { "server" : "mysql-tang" }, "position" : { "ts_sec" : 1621585297, "file" : "mysql-bin-changelog.000015", "pos" : 511, "snapshot" : true }, "databaseName" : "inventory", "ddl" : "CREATE TABLE `test` (\n `id` int(11) DEFAULT NULL,\n `name` varchar(10) DEFAULT NULL\n) ENGINE=InnoDB DEFAULT CHARSET=latin1", "tableChanges" : [ { "type" : "CREATE", "id" : "\"inventory\".\"test\"", "table" : { "defaultCharsetName" : "latin1", "primaryKeyColumnNames" : [ ], "columns" : [ { "name" : "id", "jdbcType" : 4, "typeName" : "INT", "typeExpression" : "INT", "charsetName" : null, "length" : 11, "position" : 1, "optional" : true, "autoIncremented" : false, "generated" : false }, { "name" : "name", "jdbcType" : 12, "typeName" : "VARCHAR", "typeExpression" : "VARCHAR", "charsetName" : "latin1", "length" : 10, "position" : 2, "optional" : true, "autoIncremented" : false, "generated" : false } ] } } ] } |
RMDB数据经Debezium Connector写入Kafka后,先由Flink进行消费。可以参考Flink官网中对Debezium格式的处理代码[5]:
CREATE TABLE topic_products ( -- schema is totally the same to the MySQL "products" table id BIGINT, name STRING, description STRING, weight DECIMAL(10, 2) ) WITH ( 'connector' = 'kafka', 'topic' = 'products_binlog', 'properties.bootstrap.servers' = 'localhost:9092', 'properties.group.id' = 'testGroup', -- using 'debezium-json' as the format to interpret Debezium JSON messages -- please use 'debezium-avro-confluent' if Debezium encodes messages in Avro format 'format' = 'debezium-json' ) |
RMDB数据经Debezium Connector写入Kafka后,接下来通过 Flink 将流式数据写入到一张Hudi表,实现实时数据到Hudi。此部分可以参考Hudi官网对Flink支持的代码[6]:
CREATE TABLE t1( uuid VARCHAR(20), -- you can use 'PRIMARY KEY NOT ENFORCED' syntax to mark the field as record key name VARCHAR(10), age INT, ts TIMESTAMP(3), `partition` VARCHAR(20) ) PARTITIONED BY (`partition`) WITH ( 'connector' = 'hudi', 'path' = 'table_base_path', 'write.tasks' = '1', -- default is 4 ,required more resource 'compaction.tasks' = '1', -- default is 10 ,required more resource 'table.type' = 'MERGE_ON_READ' -- this creates a MERGE_ON_READ table, by default is COPY_ON_WRITE ); |
在这个过程中,有一点需要注意的是,在使用Hudi官网提到的 hudi-flink-bundle_2.11-0.7.0.jar (或hudi-flink-bundle_2.11-0.8.0.jar) 时,会遇到以下问题:
Caused by: org.apache.flink.table.api.ValidationException: Could not find any factory for identifier 'hudi' that implements 'org.apache.flink.table.factories.DynamicTableFactory' in the classpath.
|
从报错来看,hudi-flink-bundle_2.11-0.7.0.jar版本并未提供flink 与 hudi 通过 “connector=hudi” 集成的功能。但是在最新版的Hudi tutorial中有提到(当前为hudi 0.9 版本)需要hudi-flink-bundle_2.1?-*.*.*.jar。
于是笔者尝试了手动编译hudi 0.9 版本,build出hudi-flink-bundle_2.11-0.9.0-SNAPSHOT.jar。但是在编译过程中遇到以下问题:
[ERROR] Failed to execute goal on project hudi-hadoop-mr: Could not resolve dependencies for project org.apache.hudi:hudi-hadoop-mr:jar:0.9.0-SNAPSHOT: Failed to collect dependencies at org.apache.hive:hive-exec:jar:core:2.3.2 -> org.apache.calcite:calcite-core:jar:1.10.0 -> org.pentaho:pentaho-aggdesigner-algorithm:jar:5.1.5-jhyde: Failed to read artifact descriptor for org.pentaho:pentaho-aggdesigner-algorithm:jar:5.1.5-jhyde: Could not transfer artifact org.pentaho:pentaho-aggdesigner-algorithm:pom:5.1.5-jhyde from/to maven-default-http-blocker (http://0.0.0.0/): Blocked mirror for repositories: [nexus-aliyun (http://maven.aliyun.com/nexus/content/groups/public/, default, releases), datanucleus (http://www.datanucleus.org/downloads/maven2, default, releases), glassfish-repository (http://maven.glassfish.org/content/groups/glassfish, default, disabled), glassfish-repo-archive (http://maven.glassfish.org/content/groups/glassfish, default, disabled), apache.snapshots (http://repository.apache.org/snapshots, default, snapshots), central (http://repo.maven.apache.org/maven2, default, releases), conjars (http://conjars.org/repo, default, releases+snapshots)] -> [Help 1] |
此问题说明的是无法从提供的任一maven 源中拉取org.pentaho:pentaho-aggdesigner-algorithm:jar:5.1.5-jhyde 包。
解决此问题的方法是:手动下载此jar包(位置为https://public.nexus.pentaho.org/repository/proxy-public-3rd-party-release/org/pentaho/pentaho-aggdesigner-algorithm/5.1.5-jhyde/pentaho-aggdesigner-algorithm-5.1.5-jhyde.jar
),并install 到本地 maven仓库中,再修改对应编译模块的pom文件,加上此依赖说明即可。
Maven install package的命令如:
../apache-maven-3.8.1/bin/mvn install:install-file -DgroupId=org.pentaho -DartifactId=pentaho-aggdesigner-algorithm -Dversion=5.1.5-jhyde -Dpackaging=jar -Dfile=/home/hadoop/.m2/repository/org/pentaho/pentaho-aggdesigner-algorithm/5.15-jhyde/pentaho-aggdesigner-algorithm-5.15-jhyde.jar |
此过程完成后,可以成功解决flink sql 映射 hudi 表的问题。
在AWS EMR 最新版 emr-5.33.0 下,Flink版本为1.12.1,而hudi 0.9 版本编译所需的Flink版本为1.12.2。
笔者在编译0.9 版本 hudi 的 hudi-flink-bundle_2.11-0.9.0-SNAPSHOT.jar后,在EMR-5.33.0 下使用,遇到版本不一致报出的 NoSuchMethod问题。尝试各种jar包替换后仍未解决。
所以最终使用的是自建Flink 1.12.2 版本集群。
使用简单的测试表进行测试。
MySQL中建表:
create table customer(id varchar(20), name varchar(10), age int, user_level varchar(10)); |
启动Flink程序,主体代码为:
package cdc
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment import org.apache.flink.table.api.{EnvironmentSettings, SqlDialect, TableResult} import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
object DebeziumHudi {
def main(args: Array[String]): Unit = { // Env settings val senv = StreamExecutionEnvironment.getExecutionEnvironment val blinkStreamSetting = EnvironmentSettings.newInstance().inStreamingMode().useBlinkPlanner().build() val tableEnv = StreamTableEnvironment.create(senv, blinkStreamSetting) tableEnv.getConfig().setSqlDialect(SqlDialect.DEFAULT)
val table_base_path = args(0) val table_type = args(1)
// kafka config val topicName = "my-con.tangdb.customer" val bootstrapServers = "xxxx:9092" val groupID = "group_mysql_tangdb"
// create kafka table val create_kafka_table_sql = "CREATE TABLE customer(\n" + "id VARCHAR(20),\n" + "name VARCHAR(10),\n" + "age int,\n" + "user_level VARCHAR(20) \n" + ") WITH (\n" + " 'connector' = 'kafka',\n" + " 'topic' = '" + topicName + "',\n" + " 'properties.bootstrap.servers' = '" + bootstrapServers + "',\n" + " 'properties.group.id' = '" + groupID + "',\n" + " 'debezium-json.schema-include' = 'true',\n" + " 'format' = 'debezium-json'\n" + ")"
// hudi table config //val table_base_path = "s3://xxx-hudi/customer/" //val table_type = "COPY_ON_WRITE"
// create hudi table val create_hudi_table_sql = "CREATE TABLE customers_hudi(\n" + "id VARCHAR(20) PRIMARY KEY NOT ENFORCED,\n" + "name VARCHAR(10),\n" + "age INT,\n" + "ts TIMESTAMP(3), \n" + "`user_level` VARCHAR(20) ) \n" + "PARTITIONED BY (user_level) \n" + "WITH (\n" + " 'connector' = 'hudi',\n" + " 'path' = '" + table_base_path +"',\n" + " 'table.type' = '" + table_type + "',\n" + " 'read.tasks' = '1',\n" + " 'write.tasks' = '1',\n" + " 'compaction.tasks' = '1',\n" + " 'write.batch.size' = '8',\n" + " 'compaction.delta_commits' = '2',\n" + " 'compaction.delta_seconds' = '10' " + ")"
// do sql query tableEnv.executeSql(create_kafka_table_sql) tableEnv.executeSql(create_hudi_table_sql) tableEnv.executeSql("insert into customers_hudi (id, name, age, ts, user_level) select id, name, age, current_timestamp, user_level from customer")
}
} |
提交Flink程序后正常运行:
使用MySQL procedure 不断向customer 表中写入数据。可以观察到hudi路径下出现对应分区路径,并出现结果文件:
$ hdfs dfs -ls s3://xxx-hudi/customer/ Found 3 items drwxrwxrwx - hadoop hadoop 0 1970-01-01 00:00 s3://tang-hudi/customer/.hoodie drwxrwxrwx - hadoop hadoop 0 1970-01-01 00:00 s3://tang-hudi/customer/lv2 drwxrwxrwx - hadoop hadoop 0 1970-01-01 00:00 s3://tang-hudi/customer/lv3
$ hdfs dfs -ls s3://xxx-hudi/customer/lv2/ Found 2 items -rw-rw-rw- 1 hadoop hadoop 93 2021-05-24 13:52 s3://tang-hudi/customer/lv2/.hoodie_partition_metadata -rw-rw-rw- 1 hadoop hadoop 2092019 2021-05-24 14:00 s3://tang-hudi/customer/lv2/e8195cc8-aae4-4462-8605-7f4eceac90ce_0-1-0_20210524134250.parquet |
首先使用 AWS S3 Select 查询目标parquet文件,可以拿到正确结果:
但是,而后分别使用了 SparkSQL与 Hive对Hudi表地址进行映射并执行读取操作,结果均失败。暂未得出失败原因。
初步判断可能与包环境依赖有关。由于最新版AWS EMR emr-5.33.0 下,Flink版本为1.12.1,而hudi 0.9 版本编译所需的Flink版本为1.12.2。所以笔者使用了自建的Flink集群,当时仅考虑了Flink与Hudi版本保持一致,但未将Spark与Hive版本纳入考虑范围内,所以可能导致了此原因。
总体来看,Debezium是一个非常方便部署使用的CDC工具,可以有效地将RMSDB数据抽取到消息系统中,供不同的下游应用消费。而Flink直接对接Debezium与Hudi的功能,极大方便了数据湖场景下的实时数据ingestion。
[1] https://debezium.io/documentation/reference/1.5/architecture.html
[2] https://operatorhub.io
[3] https://operatorhub.io/operator/strimzi-kafka-operator
[4] https://github.com/operator-framework/operator-lifecycle-manager/releases/
[5] https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/connectors/table/formats/debezium/
[6] https://hudi.apache.org/docs/flink-quick-start-guide.html