- [特殊字符] 实时数据洪流突围战:Flink+Paimon实现毫秒级分析的架构革命(附压测报告)——日均百亿级数据处理成本降低60%的工业级方案
Lucas55555555
flink大数据
引言:流批一体的时代拐点据阿里云2025白皮书显示,实时数据处理需求年增速达240%,但传统Lambda架构资源消耗占比超运维成本的70%。某电商平台借助Flink+Paimon重构实时数仓后,端到端延迟从分钟级压缩至800ms,计算资源节省5.6万核/月。技术红利窗口期:2025年ApachePaimon1.0正式发布,支持秒级快照与湖仓一体,成为替代Iceberg的新范式一、痛点深挖:实时数仓
- Flink 2.0 DataStream算子全景
Edingbrugh.南空
大数据flinkflink人工智能
在实时流处理中,ApacheFlink的DataStreamAPI算子是构建流处理pipeline的基础单元。本文基于Flink2.0,聚焦算子的核心概念、分类及高级特性。一、算子核心概念:流处理的"原子操作1.数据流拓扑(StreamTopology)每个Flink应用可抽象为有向无环图(DAG),由源节点(Source)、算子节点(Operator)和汇节点(Sink)构成,算子通过数据流(S
- FlinkSQL 自定义函数详解
Tit先生
基础flinksql大数据java
FlinkSQL函数详解自定义函数除了内置函数之外,FlinkSQL还支持自定义函数,我们可以通过自定义函数来扩展函数的使用FlinkSQL当中自定义函数主要分为四大类:1.ScalarFunction:标量函数特点:每次只接收一行的数据,输出结果也是1行1列典型的标量函数如:upper(str),lower(str),abs(salary)2.TableFunction:表生成函数特点:运行时每
- Flink自定义函数之聚合函数(UDAGG函数)
土豆马铃薯
Flinkflink大数据
1.聚合函数概念聚合函数:将一个表的一个或多个行并且具有一个或多个属性聚合为标量值。聚合函数理解:假设一个关于饮料的表。表里面有三个字段,分别是id、name、price,表里有5行数据。假设你需要找到所有饮料里最贵的饮料的价格,即执行一个max()聚合。你需要遍历所有5行数据,而结果就只有一个数值。2.聚合函数实现聚合函数主要通过扩展AggregateFunction类实现。AggregateF
- Flink时间窗口详解
bxlj_jcj
Flinkflink大数据
一、引言在大数据流处理的领域中,Flink的时间窗口是一项极为关键的技术,想象一下,你要统计一个电商网站每小时的订单数量。由于订单数据是持续不断产生的,这就形成了一个无界数据流。如果没有时间窗口的概念,你就需要处理无穷无尽的数据,难以进行有效的统计分析。而时间窗口的作用,就是将这无界的数据流按照时间维度切割成一个个有限的“数据块”,方便我们对这些数据进行处理和分析。比如,我们可以定义一个1小时的时
- Flink DataStream API详解(一)
bxlj_jcj
Flinkflink大数据
一、引言Flink的DataStreamAPI,在流处理领域大显身手的核心武器。在很多实时数据处理场景中,如电商平台实时分析用户购物行为以实现精准推荐,金融领域实时监控交易数据以防范风险,DataStreamAPI都发挥着关键作用,能够对源源不断的数据流进行高效处理和分析。接下来,就让我们一起深入探索FlinkDataStreamAPI。二、DataStream编程基础搭建在开始使用FlinkDa
- flink自定义函数
逆风飞翔的小叔
flink入门到精通flink大数据bigdata
前言在很多情况下,尽管flink提供了丰富的转换算子API可供开发者对数据进行各自处理,比如map(),filter()等,但在实际使用的时候仍然不能满足所有的场景,这时候,就需要开发人员基于常用的转换算子的基础上,做一些自定义函数的处理1、来看一个常用的操作原始待读取的文件核心代码importorg.apache.flink.api.common.functions.FilterFunction
- Flink自定义函数的常用方式
飞Link
Waterflinkjava大数据
一、实现Flink提供的接口//自定义函数classMyMapFunctionimplementsMapFunction{publicIntegermap(Stringvalue){returnInteger.parseInt(value
- Flink DataStream API详解(二)
一、引言咱两书接上回,上一篇文章主要介绍了DataStreamAPI一些基本的使用,主要是针对单数据流的场景下,但是在实际的流处理场景中,常常需要对多个数据流进行合并、拆分等操作,以满足复杂的业务需求。Flink的DataStreamAPI提供了一系列强大的多流转换算子,如union、connect和split等,下面我们来详细了解一下它们的功能和用法。二、多流转换2.1union算子union算
- 【Kafka】Failed to send data to Kafka: Expiring 30 record(s) for xxx 732453 ms has passed since last
九师兄
kafkabigdatazookeeper
文章目录1.美图2.背景2.尝试方案13.尝试解决24.场景再现25.场景46.场景57.场景78.场景8M.拓展本文为博主九师兄(QQ:541711153欢迎来探讨技术)原创文章,未经允许博主不允许转载。1.美图问题与【Flink】Flink写入kafka报错FailedtosenddatatoKafka:Expiring4record(s)for20001mshaspassed重复了。2.背景
- 【Flink】flink Kafka报错 : Failed to send data to Kafka: This server is not the leader for that topic-pa
九师兄
flinkkafka大数据
1.背景出现这个问题的背景请参考:【Kafka】FailedtosenddatatoKafka:Expiring30record(s)forxxx732453mshaspassedsincelast[2020-09-0513:16:09
- 安全运维的 “五层防护”:构建全方位安全体系
KKKlucifer
安全运维
在数字化运维场景中,异构系统复杂、攻击手段隐蔽等挑战日益突出。保旺达基于“全域纳管-身份认证-行为监测-自动响应-审计溯源”的五层防护架构,融合AI、零信任等技术,构建全链路安全运维体系,以下从技术逻辑与实践落地展开解析:第一层:全域资产纳管——筑牢安全根基挑战云网基础设施包含分布式计算(Hadoop/Spark)、数据流处理(Storm/Flink)等异构组件,通信协议繁杂,传统方案难以全面纳管
- kafka单个生产者向具有多个partition的topic写数据(写入分区策略)
最近碰到生产环境现象一个flink程序单并行度(一个生产者),对应topic为8分区。每个分区都能消费到生产出的数据。整理知识点如下生产者写入消息到topic,kafka将依据不同的策略将数据分配到不同的分区中1.轮询分区策略2.随机分区策略3.按key分区分配策略4.自定义分区策略1.1轮询分区策略默认的策略,也是使用最多的策略,可以最大限度的保证所有消息平均分配到分区里面如果在生产消息时,ke
- 云原生--微服务、CICD、SaaS、PaaS、IaaS
青秋.
云原生docker云原生微服务kubernetesserverlessservice_meshci/cd
往期推荐浅学React和JSX-CSDN博客一文搞懂大数据流式计算引擎Flink【万字详解,史上最全】-CSDN博客一文入门大数据准流式计算引擎Spark【万字详解,全网最新】_大数据spark-CSDN博客目录1.云原生概念和特点2.常见云模式3.云对外提供服务的架构模式3.1IaaS(Infrastructure-as-a-Service)3.2PaaS(Platform-as-a-Servi
- Apache Iceberg数据湖基础
Aurora_NeAr
apache
IntroducingApacheIceberg数据湖的演进与挑战传统数据湖(Hive表格式)的缺陷:分区锁定:查询必须显式指定分区字段(如WHEREdt='2025-07-01')。无原子性:并发写入导致数据覆盖或部分可见。低效元数据:LIST操作扫描全部分区目录(云存储成本高)。Iceberg的革新目标:解耦计算引擎与存储格式(支持Spark/Flink/Trino等);提供ACID事务、模式
- Flink ClickHouse 连接器:实现 Flink 与 ClickHouse 无缝对接
Edingbrugh.南空
大数据flinkflinkclickhouse大数据
引言在大数据处理领域,ApacheFlink是一款强大的流处理和批处理框架,而ClickHouse则是一个高性能的列式数据库,专为在线分析处理(OLAP)场景设计。FlinkClickHouse连接器为这两者之间搭建了一座桥梁,使得用户能够在Flink中方便地与ClickHouse数据库进行交互,实现数据的读写操作。本文将详细介绍FlinkClickHouse连接器的相关内容,包括其特点、使用方法
- 大数据技术之Flink
第1章Flink概述1.1Flink是什么1.2Flink特点1.3FlinkvsSparkStreaming表Flink和Streaming对比FlinkStreaming计算模型流计算微批处理时间语义事件时间、处理时间处理时间窗口多、灵活少、不灵活(窗口必须是批次的整数倍)状态有没有流式SQL有没有1.4Flink的应用场景1.5Flink分层API第2章Flink快速上手2.1创建项目在准备
- Hadoop核心组件最全介绍
Cachel wood
大数据开发hadoop大数据分布式spark数据库计算机网络
文章目录一、Hadoop核心组件1.HDFS(HadoopDistributedFileSystem)2.YARN(YetAnotherResourceNegotiator)3.MapReduce二、数据存储与管理1.HBase2.Hive3.HCatalog4.Phoenix三、数据处理与计算1.Spark2.Flink3.Tez4.Storm5.Presto6.Impala四、资源调度与集群管
- flink数据同步mysql到hive_基于Canal与Flink实现数据实时增量同步(二)
背景在数据仓库建模中,未经任何加工处理的原始业务层数据,我们称之为ODS(OperationalDataStore)数据。在互联网企业中,常见的ODS数据有业务日志数据(Log)和业务DB数据(DB)两类。对于业务DB数据来说,从MySQL等关系型数据库的业务数据进行采集,然后导入到Hive中,是进行数据仓库生产的重要环节。如何准确、高效地把MySQL数据同步到Hive中?一般常用的解决方案是批量
- Flink OceanBase CDC 环境配置与验证
Edingbrugh.南空
运维大数据flinkflinkoceanbase大数据
一、OceanBase数据库核心配置1.环境准备与版本要求版本要求:OceanBaseCE4.0+或OceanBaseEE2.2+组件依赖:需部署LogProxy服务(社区版/企业版部署方式不同)兼容模式:支持MySQL模式(默认)和Oracle模式2.创建用户与权限配置在sys租户创建管理用户(社区版示例):--连接sys租户(默认端口2881)mysql-h127.0.0.1-P2881-ur
- Flink MongoDB CDC 环境配置与验证
Edingbrugh.南空
运维大数据flinkflinkmongodb大数据
一、MongoDB数据库核心配置1.环境准备与集群要求MongoDBCDC依赖ChangeStreams特性,需满足以下条件:版本要求:MongoDB≥3.6集群模式:副本集(ReplicaSet)或分片集群(ShardedCluster)存储引擎:WiredTiger(默认自3.2版本起)副本集协议:pv1(MongoDB4.0+默认)验证集群配置:#连接MongoDBshellmongo--h
- Flink将数据流写入Kafka,Redis,ES,Mysql
浅唱战无双
flinkmysqlesrediskafka
Flink写入不同的数据源写入到Mysql写入到ES向Redis写入向kafka写入导入公共依赖org.slf4jslf4j-simple1.7.25compileorg.apache.flinkflink-java1.10.1org.apache.flinkflink-streaming-java_2.121.10.1写入到Mysql导入依赖mysqlmysql-connector-java5.
- Flink TiDB CDC 环境配置与验证
一、TiDB数据库核心配置1.启用TiCDC服务确保TiDB集群已部署TiCDC组件(版本需兼容FlinkCDC3.0.1),并启动同步服务:#示例:启动TiCDC捕获changefeedcdcclichangefeedcreate\--pd="localhost:2379"\--sink-uri="blackhole://"\--changefeed-id="flink-cdc-demo"2.验
- Flink CDC支持Oracle RAC架构CDB+PDB模式的实时数据同步吗,可以上生产环境吗
智海观潮
Flinkflinkcdcoracleflink数据同步大数据
众所周知,FlinkCDC是一个流数据集成工具,支持多种数据源的实时数据同步,包括大家所熟知的MySQL,MongoDB等。原本是作为Flink的子项目运行,后来捐献给Apache基金会,底层实现比较依赖于Flink生态。具体到数据同步底层实现则相对比较依赖于Debezium。对于Oracle实时数据同步有需求的用户来说,经常会有疑问,比如FlinkCDC支持Oracle实时数据同步吗,可以应用到
- Flink Oracle CDC 环境配置与验证
一、Oracle数据库核心配置详解1.启用归档日志(ArchivingLog)OracleCDC依赖归档日志获取增量变更数据,需按以下步骤启用:非CDB数据库配置:--以DBA身份连接数据库CONNECTsys/passwordASSYSDBA;--配置归档目标路径和大小ALTERSYSTEMSETdb_recovery_file_dest_size=10G;ALTERSYSTEMSETdb_re
- flink读取kafka的数据处理完毕写入redis
JinVijay
flinkkafkaredisflink
/**从Kafka读取数据处理完毕写入Redis*/publicclassKafkaToRedis{publicstaticvoidmain(String[]args)throwsException{StreamExecutionEnvironmentenv=StreamExecutionEnvironment.getExecutionEnvironment();//开启checkpointing
- 阿里云Flink:开启大数据实时处理新时代
云资源服务商
阿里云大数据云计算
走进阿里云Flink在大数据处理的广袤领域中,阿里云Flink犹如一颗璀璨的明星,占据着举足轻重的地位。随着数据量呈指数级增长,企业对数据处理的实时性、高效性和准确性提出了前所未有的挑战。传统的数据处理方式逐渐难以满足这些严苛的需求,而阿里云Flink凭借其卓越的特性和强大的功能,成为众多企业实现数据价值挖掘与业务创新的关键技术。它不仅继承了开源Flink的优秀基因,还融入了阿里云自主研发的创新技
- 大数据集群架构hadoop集群、Hbase集群、zookeeper、kafka、spark、flink、doris、dataeas(二)
争取不加班!
hadoophbasezookeeper大数据运维
zookeeper单节点部署wget-chttps://dlcdn.apache.org/zookeeper/zookeeper-3.8.4/apache-zookeeper-3.8.4-bin.tar.gz下载地址tarxfapache-zookeeper-3.8.4-bin.tar.gz-C/data/&&mv/data/apache-zookeeper-3.8.4-bin//data/zoo
- Hadoop、Spark、Flink 三大大数据处理框架的能力与应用场景
一、技术能力与应用场景对比产品能力特点应用场景Hadoop-基于MapReduce的批处理框架-HDFS分布式存储-容错性强、适合离线分析-作业调度使用YARN-日志离线分析-数据仓库存储-T+1报表分析-海量数据处理Spark-基于内存计算,速度快-支持批处理、流处理(StructuredStreaming)-支持SQL、ML、图计算等-支持多语言(Scala、Java、Python)-近实时处
- 数据同步工具对比:Canal、DataX与Flink CDC
智慧源点
大数据flink大数据
在现代数据架构中,数据同步是构建数据仓库、实现实时分析、支持业务决策的关键环节。Canal、DataX和FlinkCDC作为三种主流的数据同步工具,各自有着不同的设计理念和适用场景。本文将深入探讨这三者的技术特点、使用场景以及实践中的差异,帮助开发者根据实际需求选择合适的工具。1.工具概述1.1CanalCanal是阿里巴巴开源的一款基于MySQL数据库增量日志(binlog)解析的组件,主要用于
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo