PyTorch学习之线性回归练习+手写数字识别初体验

线性回归练习

loss = (WX + b - y)^2

def compute_error_for_line_given_points(b, w, points):
    totalError = 0
    for i in range(0, len(points)):
        x = points[i, 0]
        y = points[i, 1]
        totalError += (y - (w * x + b)) ** 2
    return totalError / float(len(points))

w' = w - lr * \frac{\bigtriangledown loss}{\bigtriangledown w}

loss = (WX + b - y)^{2}

def step_gradient(b_current, w_current, points, learningRate):
    b_gradient = 0
    w_gradient = 0
    N = float(len(points))
    for i in range(0, len(points)):
        x = points[i, 0]
        y = points[i, 1]
        b_gradient += -(2/N) * (y - ((w_current * x) + b_current))
        w_gradient += -(2/N) * x * (y - ((w_current * x) + b_current))
    new_b = b_current - (b_gradient * learningRate)
    new_w = w_current - (w_gradient * learningRate)
    return [new_b, new_w]
# Iterate to optimize
def gradient_desce

你可能感兴趣的:(PyTorch,Deep,Learning,PyTorch)