- 【人工智能基础2】机器学习、深度学习总结
roman_日积跬步-终至千里
人工智能习题人工智能机器学习深度学习
文章目录一、人工智能关键技术二、机器学习基础1.监督、无监督、半监督学习2.损失函数:四种损失函数3.泛化与交叉验证4.过拟合与欠拟合5.正则化6.支持向量机三、深度学习基础1、概念与原理2、学习方式3、多层神经网络训练方法一、人工智能关键技术领域基础原理与逻辑机器学习机器学习基于数据,研究从观测数据出发寻找规律,利用这些规律对未来数据进行预测。基于学习模式,机器学习可以分为监督、无监督、强化学习
- HTML5拼图游戏开发经验分享
木木黄木木
html5前端html
HTML5拼图游戏开发经验分享这里写目录标题HTML5拼图游戏开发经验分享前言项目架构1.文件结构2.核心功能模块技术要点解析1.响应式布局2.图片处理3.拖拽交互4.动画效果性能优化开发心得项目亮点总结源码分享写在最后前言在Web前端开发领域,通过实战项目来提升编程技能是最有效的学习方式之一。今天我要分享一个HTML5拼图游戏的开发经验,这个项目涵盖了现代前端开发的多个重要概念,包括响应式设计、
- 人工智能机器学习算法分类全解析
power-辰南
人工智能人工智能机器学习算法python
目录一、引言二、机器学习算法分类概述(一)基于学习方式的分类1.监督学习(SupervisedLearning)2.无监督学习(UnsupervisedLearning)3.强化学习(ReinforcementLearning)(二)基于任务类型的分类1.分类算法2.回归算法3.聚类算法4.降维算法5.生成算法(三)基于模型结构的分类1.线性模型2.非线性模型3.基于树的模型4.基于神经网络的模型
- 深度学习与普通神经网络有何区别?
是理不是里
深度学习神经网络人工智能
深度学习与普通神经网络的主要区别体现在以下几个方面:一、结构复杂度普通神经网络:通常指浅层结构,层数较少,一般为2-3层,包括输入层、一个或多个隐藏层、输出层。深度学习:强调通过5层以上的深度架构逐级抽象数据特征,包含多层神经网络,层数可能达到几十层甚至上百层。例如,ResNet(2015)包含152个卷积层。二、特征学习方式普通神经网络:特征提取通常依赖人工设计,需要领域专家的经验。这意味着在处
- 一文读懂!OpenCV 实时人脸识别从 0 到 1,小白也能轻松实操的超详细教程(完整教程及源码)
AI_DL_CODE
opencv人工智能计算机视觉人脸识别
摘要:本文围绕使用OpenCV实现实时人脸识别展开。从环境搭建入手,详细介绍Python及相关库的安装。数据准备环节涵盖收集、标注及预处理步骤。深入阐述特征提取、模型训练方法,包含传统与深度学习方式,还介绍OpenCV预训练模型的使用与评估。详细讲解实时识别过程,包括打开摄像头、逐帧处理及结果显示优化。针对复杂场景,提出光照、姿态、遮挡等问题的解决办法及模型更新维护策略。通过丰富代码示例与解释,助
- 学生行为习惯画像可视分析平台
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
学生行为习惯,画像分析,可视化,机器学习,数据挖掘,教育科技1.背景介绍随着教育信息化进程的不断加速,海量教育数据正在被生成和积累。这些数据蕴含着丰富的学生行为信息,例如学习时间、学习内容、学习方式、学习效果等。有效挖掘和分析这些数据,能够帮助教育工作者深入了解学生的学习习惯和行为模式,从而为个性化教学、精准指导和学习效果提升提供重要支撑。然而,传统的教育数据分析方法往往局限于简单的统计描述,难以
- 一文讲清楚自我学习和深度学习
平凡而伟大(心之所向)
人工智能人工智能深度学习机器学习
自我学习(Self-Learning)和深度学习(DeepLearning)是两个不同的概念,但它们在某些应用场景中可以有交集。下面我们将分别介绍这两个概念,并探讨如何将它们结合起来用于自我学习系统。自我学习(Self-Learning)自我学习是指个体或系统通过自主探索、实践和反思来获取知识和技能的过程。它强调的是无需外部直接指导的学习方式,通常包括以下几个方面:自主性:学习者根据自己的兴趣、需
- SFT与RLHF的关系
一只积极向上的小咸鱼
人工智能
在大模型训练中,SFT(监督微调)和RLHF(基于人类反馈的强化学习)是相互关联但目标不同的两个阶段,通常需要结合使用以优化模型性能,而非互相替代。以下是关键要点:1.核心关系SFT:基于标注的高质量样本(如问答对、指令-回答数据),以监督学习方式直接调整模型参数,使模型初步掌握特定任务(如对话生成)的基础能力。作用:快速适配下游任务,让模型学会"如何正确生成内容"。RLHF:通过人类对模型输出的
- JVM中对象的创建
重生之我在成电转码
java八股jvm算法
在Java中,JVM(JavaVirtualMachine)负责对象的创建和管理。对象的创建过程涉及多个步骤,从类加载、内存分配,到对象的初始化和构造方法的调用。了解JVM如何创建对象有助于更好地掌握Java的内存管理和性能优化。JVM中对象创建的过程当我们使用new关键字创建一个对象时,JVM会执行一系列操作。这些操作大致可以分为以下几个步骤:类加载(ClassLoading)内存分配(Memo
- pytest系列——pytest_collection_modifyitems钩子函数修改测试用例执行顺序
测试中二
pytest框架测试用例pytest
视频学习方式:www.bilibili.com/video/BV14i4y1c7Jowww.bilibili.com/video/BV14i4y1c7Jo前言pytest默认执行用例是根据项目下的文件名称按ascii码去收集运行的;文件中的用例是从上往下按顺序执行的。pytest_collection_modifyitems这个函数顾名思义就是收集测试用例、改变用例的执行顺序的。【严格意义上来说,
- DeepSeek最新攻略:掌握这些技巧,让AI为你所用
古龙飞扬
人工智能大数据
DeepSeek作为一款强大的AI工具,正在逐步改变我们的工作和学习方式。掌握DeepSeek的使用技巧,不仅能帮助我们更高效地完成各种任务,还能激发我们的创造力,让我们在各个领域都能得心应手。以下是一份详尽的DeepSeek使用攻略,涵盖了从基础操作到高级技巧的各个方面,旨在帮助你最大化利用DeepSeek的能力。一、基础入门:了解DeepSeek的核心功能DeepSeek提供了多种核心功能,以
- React 高级阶段学习计划
夜游猿
Reactreact.js学习前端
React高级阶段学习计划目标深入理解React的渲染机制和性能优化。学会代码分割和懒加载。掌握单元测试和集成测试。学习TypeScript与React的结合。学习内容性能优化React.memoReact.memo:用于优化函数组件的性能,避免不必要的重新渲染。示例:importReact,{useState,useMemo}from'react';constExpensiveComponent
- 机器学习基础
dringlestry
机器学习人工智能
了解机器学习的基本概念,如监督学习、无监督学习、强化学习、模型评估指标(准确率、召回率、F1分数等)。机器学习(MachineLearning,ML)是人工智能(AI)的一个分支,它使计算机能够通过数据和经验自动改进,而无需明确编程。机器学习可以根据学习方式和数据的有无,分为以下几种基本类型:1.监督学习(SupervisedLearning)监督学习是一种机器学习类型,其中模型通过带标签的数据进
- 动态记忆网络 DeepMind的MEMO架构允许在推理时动态读写记忆矩阵,记忆容量提升40倍
玩人工智能的辣条哥
人工智能人工智能
为了更深入地理解MEMO架构的意义,我来详细解读一下,并探讨它在实际应用中的潜力:MEMO架构的核心思想MEMO(MemorizingoverMemorized)架构的核心思想是“层叠记忆”。传统的记忆网络通常只有一个外部记忆模块,而MEMO架构则引入了多层记忆模块,每一层记忆模块都以前一层记忆模块的输出作为输入,从而实现更复杂的记忆和推理。MEMO架构的关键组成部分多层记忆模块(Multi-La
- 【自然语言处理|迁移学习-08】:中文语料完型填空
爱学习不掉头发
深度学习自然语言处理(NLP)自然语言处理迁移学习人工智能
文章目录1中文语料完型填空任务介绍2数据集加载及处理3定义下游任务模型4模型训练5.模型测试1中文语料完型填空任务介绍任务介绍:完成中文语料完型填空完型填空是一个分类问题,[MASK]单词有21128种可能数据构建实现分析:使用迁移学习方式完成使用预训练模型bert模型提取文特征,后面添加全连接层和softmax进行单标签多分类2数据集加载及处理数据介绍:数据文件有三个train.csv,test
- 力扣动态规划-32【算法学习day.126】
南宫生
算法#动态规划算法leetcode动态规划学习java
前言###我做这类文章一个重要的目的还是记录自己的学习过程,我的解析也不会做的非常详细,只会提供思路和一些关键点,力扣上的大佬们的题解质量是非常非常高滴!!!习题1.完全平方数题目链接:279.完全平方数-力扣(LeetCode)题面:代码:classSolution{privatestaticfinalint[][]memo=newint[101][10001];static{for(int[]
- 【带你 langchain 双排系列教程】1. langchian 基本架构与环境配置(siliconFlow Deepseek接入)
夜里慢慢行456
langchain
LangChain是一个用于构建和部署大模型应用的框架,涵盖了从语言模型(LLM)到检索增强生成(RAG)、OpenAI集成以及智能体(Agent)的全套工具链。以下是一个简要的LangChain大模型全套教程,帮助你快速上手。核心内容:LangChain六大模块详解:模型(Models)、提示词(Prompts)、链(Chains)、索引(Indexes)、智能体(Agents)、内存(Memo
- useMemo 和 memo 的理解和区别
程序员小续
javascriptreact.js前端
在React中,useMemo和memo都用于优化性能,减少不必要的渲染,但它们的使用场景不同。1.useMemo(记忆化计算)作用缓存计算结果,避免每次渲染都重新计算只有当依赖项发生变化时,才会重新计算✅适用场景计算量较大的值(避免重复计算)避免子组件不必要的渲染(与useCallback结合使用)代码示例importReact,{useState,useMemo}from"react";con
- 《传统教培机构的痛点:数字化转型如何破局?》
数字化浪潮下的困境在当今时代,数字化浪潮正以前所未有的速度席卷全球,深刻地改变着人们的生活、工作和学习方式。这是一个数据爆炸的时代,数据成为了驱动社会发展的核心要素之一。据统计,全球每天产生的数据量高达数万亿字节,这些数据涵盖了人们生活的方方面面,从购物习惯到社交行为,从健康状况到学习偏好,都被数字化记录下来。[]()数字化时代的技术创新日新月异,人工智能、大数据、云计算、物联网等新兴技术不断涌现
- 电子书阅读项目的学习效果与学生反馈
火箭统
电子书阅读学习效果学生反馈英语学习教学设计
背景简介随着数字技术的不断进步,电子书(e-books)作为一种新兴的阅读方式,正在逐渐改变人们的阅读习惯和学习方式。本文将基于《电子书阅读项目的学习效果》章节的内容,探讨电子书在英语作为外语(EFL)学习环境中的应用,以及学生们对电子书阅读项目的感知、优势、劣势和未来的改进建议。电子书阅读项目的学习效果从章节内容来看,学生们普遍对电子书阅读持积极态度。他们认为电子书可以提升阅读能力(M=3.62
- AI赋能:构建你的个性化前端开发学习路径
前端
在竞争激烈的程序员职业发展道路上,持续学习和提升技能至关重要。尤其对于前端开发者而言,技术的日新月异要求我们不断适应新的框架、工具和理念。而个性化学习路径,则成为提升学习效率,快速掌握新技能的关键。今天,我们将探讨如何利用AI代码生成器等AI工具,构建一条高效的前端开发学习路径,助力你快速提升技能,在职业发展中脱颖而出。AI如何革新前端开发学习方式传统的学习方式往往是枯燥的教程和大量的练习,学习曲
- python培训班-Python培训机构_高品质Python线下开发培训班推荐-黑马程序员
编程大乐趣
Python编程基础基础班1课时:15天技术点:97项测验:2次学习方式:线下面授学习目标1.掌握Python开发环境基本配置|2.掌握运算符、表达式、流程控制语句、数组等的使用|3.掌握字符串的基本操作|4.初步建立面向对象的编程思维|5.熟悉异常捕获的基本流程及使用方式|6.掌握类和对象的基本使用方式|7.掌握学生管理系统编写主讲内容1Python基础语法基础语法是编程语言的第一课,打好基础才
- 什么是React.memo(),它如何优化性能?
JJCTO袁龙
reactreact.jsjavascript前端
什么是React.memo(),它如何优化性能?在现代前端开发中,React的流行程度越来越高,很多开发者开始关注如何提高React应用的性能。React.memo()是一个优化组件性能的重要工具,但它并不是所有情况下都适合使用。本文将深入探讨React.memo()的概念、工作原理以及它如何帮助我们提升性能,通过示例代码加以说明。什么是React.memo()?React.memo()是一个高阶
- 机器学习算法分类
和风化雨
人工智能机器学习算法分类
机器学习算法可以根据不同的标准进行分类,常见的分类方式包括根据学习方式和算法功能进行分类。以下是详细的分类介绍:1.根据学习方式进行分类1.1监督学习(SupervisedLearning)监督学习是指在训练过程中,输入数据(特征)和输出数据(标签)都是已知的。算法通过学习输入和输出之间的映射关系,来预测新数据的输出。应用场景:分类问题(如垃圾邮件检测)、回归问题(如房价预测)。常见算法:逻辑回归
- 为什么越来越多的人使用嵌入式仿真实验教学平台进行嵌入式学习?
嵌入式仿真实验教学平台
学习嵌入式硬件嵌入式实时数据库c语言stm32
在现代嵌入式技术快速发展的背景下,越来越多的学习者和开发者开始关注嵌入式仿真实验教学平台(app.puliedu.com)的使用。这种教学平台凭借其独特的优势,正在改变传统的嵌入式学习方式,成为嵌入式教育领域的“新宠”。那么,为什么会出现这种现象?以下是一些主要原因:1.安全性高,避免硬件风险嵌入式技术的核心在于硬件与软件的深度结合。在实际开发中,硬件调试和实验可能会遇到各种问题,比如元件烧坏、信
- 【单层神经网络】基于MXNet的线性回归实现(底层实现)
辰尘_星启
线性回归mxnet机器学习人工智能深度学习神经网络python
写在前面刚开始先从普通的寻优算法开始,熟悉一下学习训练过程下面将使用梯度下降法寻优,但这大概只能是局部最优,它并不是一个十分优秀的寻优算法整体流程生成训练数据集(实际工程中,需要从实际对象身上采集数据)确定模型及其参数(输入输出个数、阶次,偏置等)确定学习方式(损失函数、优化算法,学习率,训练次数,终止条件等)读取数据集(不同的读取方式会影响最终的训练效果)训练模型完整程序及注释fromIPyth
- 你有没有想过可以轻松学习C语言?《嗨翻C语言》全新学习方式(好书分享更新中)
苹果酱0567
面试题汇总与解析大数据课程设计springbootvue.jsjava
嗨翻C语言作者:[美]DavidGriffiths/[美]DawnGriffiths出版社:人民邮电出版社原作名:HeadFirstC译者:程亦超内容简介······你能从这本书中学到什么?你有没有想过可以轻松学习C语言?《嗨翻C语言》将会带给你一次这样的全新学习体验。本书贯以有趣的故事情节、生动形象的图片,以及不拘一格、丰富多样的练习和测试,时刻激励、吸引、启发你在解决问题的同时获取新的知识。你
- AI基础数学之——掌握中学基础数学——学习脑图说明
Math_teacher_fan
AI-中学数学学习算法机器学习人工智能c++python
目录代数部分几何部分统计与概率部分难易度说明一、代数二、几何三、统计与概率AI有关的基础数学部分指明代数部分几何部分统计与概率基础数学——PC学习方式总结代数部分数与式基础:从实数开始学习,了解实数的分类、性质等。接着是二次根式,掌握其化简、运算规则。整式与因式分解中,学习整式的运算、因式分解的方法。分式则要理解分式的概念、基本性质及运算。方程(组)与不等式(组):先学习一次方程(组)及其应用,掌
- 监督学习、无监督学习和强化学习的特点和应用场景
BugNest
AI学习ai机器学习人工智能
在机器学习中,监督学习、无监督学习和强化学习是三种核心的学习范式,它们各自具有独特的特点和应用场景。以下是对这三种学习方法的详细对比和总结:监督学习(SupervisedLearning)特点:数据标注:训练数据包含明确的输入特征和对应的标签(目标输出)。学习方式:模型通过学习输入特征和标签之间的关系来进行训练,这种关系通常表现为一个映射函数。预测能力:一旦训练完成,模型能够对新的、未见过的输入数
- Vue.js `v-memo` 性能优化技巧
轻口味
VUE.JS入门与实践vue.js性能优化前端
Vue.jsv-memo性能优化技巧今天我们来聊聊Vue3.2引入的一个性能优化指令:v-memo。如果你在处理大型列表或复杂组件时,遇到性能瓶颈,那么v-memo可能会成为你的得力助手。什么是v-memo?v-memo是Vue3.2新增的内置指令,用于缓存特定元素节点的虚拟DOM(VNode)。在节点更新时,通过复用之前的VNode,减少重新创建和比较的开销,从而提升渲染性能。使用场景v-mem
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag